Enhanced authentication and key management scheme for securing data transmission in the internet of things

2019 ◽  
Vol 94 ◽  
pp. 101948 ◽  
Author(s):  
Yasmine Harbi ◽  
Zibouda Aliouat ◽  
Allaoua Refoufi ◽  
Saad Harous ◽  
Abdelhak Bentaleb
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2962
Author(s):  
Xingda Chen ◽  
Margaret Lech ◽  
Liuping Wang

Security is one of the major concerns of the Internet of Things (IoT) wireless technologies. LoRaWAN is one of the emerging Low Power Wide Area Networks being developed for IoT applications. The latest LoRaWAN release v.1.1 has provided a security framework that includes data confidentiality protection, data integrity check, device authentication and key management. However, its key management part is only ambiguously defined. In this paper, a complete key management scheme is proposed for LoRaWAN. The scheme addresses key updating, key generation, key backup, and key backward compatibility. The proposed scheme was shown not only to enhance the current LoRaWAN standard, but also to meet the primary design consideration of LoRaWAN, i.e., low power consumption.


2014 ◽  
Vol 998-999 ◽  
pp. 1374-1377
Author(s):  
Da Hui Li

This article introduces the services and development of the Internet of Things, and analyzes the driving forces and obstacles behind such development. Looking at application types and the different development stages of the Internet of Things, this article categorizes its services into four types: identity related services, information aggregation services, collaborative-aware services, and ubiquitous services. For the first two types of services, applications and system framework are discussed; for the last two types, development trends are discussed. Services provided by the Internet of Things will gradually be integrated into human life and society; with the development of the Internet of Things, applications will evolve from relatively simple identity-related and information aggregation-related applications, to collaboratively-aware and finally ubiquitous applications. It will then be possible for the Internet of Things to be fully integrated with Internet and telecommunications networks


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 14501-14512 ◽  
Author(s):  
Fadi Al-Turjman ◽  
Leonardo Mostarda ◽  
Enver Ever ◽  
Ahmed Darwish ◽  
Naziha Shekh Khalil

2020 ◽  
Vol 17 (1) ◽  
pp. 402-408
Author(s):  
Soram Ranbir Singh ◽  
Khan Kumar Ajoy

The Internet of Things (IoT) has ushered in numerous devices in many areas in our life and in industries. It could comprise devices with sensors to gather and broadcast data over the internet. As the devices are IP-based and the media are shared, any user in the network can have an access to the communication contents. The only way to impose access control in the sensor networks is through cryptography. A key is applied to encrypt the communication to prevent from unauthorized access to the network. Choosing a suitable key management scheme is very important in sensor networks as it should satisfy the constraints of the sensors. There are two indispensable public cryptosystems available in the literatures-RSA and Elliptic curve cryptography (ECC). ECC gives strong resistance to cryptanalytic attacks. So, it is used with smaller key sizes than RSA (Valenta, L., et al., 2018. In Search of CurveSwap: Measuring Elliptic Curve Implementations in the Wild. 2018 IEEE European Symposium on Security and Privacy (EuroS&P), April; IEEE. pp.384–398). The most prettiness of using elliptic curve cryptography over other cryptosystems (i.e., RSA) is that it provides same security strength for a lesser key without breaching the system, thereby consuming less resources and ameliorating performances and fast data throughput of the devices. To choose a suitable public cryptosystem for use in IoT devices like sensor networks, elliptic curve cryptography and RSA are comparatively analyzed in this paper.


Sign in / Sign up

Export Citation Format

Share Document