Wind flow simulations on idealized and real complex terrain using various turbulence models

2014 ◽  
Vol 75 ◽  
pp. 30-41 ◽  
Author(s):  
Daniel S. Abdi ◽  
Girma T. Bitsuamlak
Author(s):  
Muhammad Bilal ◽  
Narendran Sridhar ◽  
Guillermo Araya ◽  
Sivapathas Parameswaran ◽  
Yngve Birkelund

The understanding of atmospheric flows is crucial in the analysis of dispersion of a contaminant or pollutant, wind energy and air-quality assessment to name a few. Additionally, the effects of complex terrain and associated orographic forcing are crucial in wind energy production. Furthermore, the use of the Reynolds-averaged Navier-Stokes (RANS) equations in the analysis of complex terrain is still considered the “workhorse” since millions of mesh points are required to accurately capture the details of the surface. On the other hand, solving the same problem by means of the instantaneous governing equations of the flow (i.e., in a suite of DNS or LES) would imply almost prohibitive computational resources. In this study, numerical predictions of atmospheric boundary layers are performed over a complex topography located in Nygårdsfjell, Norway. The Nygårdsfjell wind farm is located in a valley at approximately 420 meters above sea level surrounded by mountains in the north and south near the Swedish border. Majority of the winds are believed to be originated from Torneträsk lake in the east which is covered with ice during the winter time. The air closest to the surface on surrounding mountains gets colder and denser. The air then slides down the hill and accumulates over the lake. Later, the air spills out westward towards Ofotfjord through the broader channel that directs and transforms it into highly accelerated winds. Consequently, one of the objectives of the present article is to study the influence of local terrain on shaping these winds over the wind farm. It is worth mentioning that we are not considering any wind turbine model in the present investigation, being the main purpose to understand the influence of the local surface topography and roughness on the wind flow. Nevertheless, future research will include modeling the presence of a wind turbine and will be published elsewhere. The governing equations of the flow are solved by using a RANS approach and by considering three different two-equation turbulence models: k-omega (k–ω), k-epsilon (k–ε) and shear stress transport (SST). Furthermore, the real topographical characteristics of the terrain have been modeled by extracting the required area from the larger digital elevation model (DEM) spanning over 100 km square. The geometry is then extruded using Rhino and meshed in ANSYS Fluent. The terrain dimensions are approximately 2000×1000 meter square.


Computation ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 43 ◽  
Author(s):  
Hermann Knaus ◽  
Martin Hofsäß ◽  
Alexander Rautenberg ◽  
Jens Bange

A model for the simulation of wind flow in complex terrain is presented based on the Reynolds averaged Navier–Stokes (RANS) equations. For the description of turbulence, the standard k-ε, the renormalization group (RNG) k-ε, and a Reynolds stress turbulence model are applied. Additional terms are implemented in the momentum equations to describe stratification of the Earth’s atmosphere and to account for the Coriolis forces driven by the Earth’s rotation, as well as for the drag force due to forested canopy. Furthermore, turbulence production and dissipation terms are added to the turbulence equations for the two-equation, as well as for the Reynolds stress models, in order to capture different types of land use. The approaches for the turbulence models are verified by means of a homogeneous canopy test case with flat terrain and constant forest height. The validation of the models is performed by investigating the WindForS wind test site. The simulation results are compared with five-hole probe velocity measurements using multipurpose airborne sensor carrier (MASC) systems (unmanned small research aircraft)—UAV at different locations for the main wind regime. Additionally, Reynolds stresses measured with sonic anemometers at a meteorological wind mast at different heights are compared with simulation results using the Reynolds stress turbulence model.


2021 ◽  
pp. 0309524X2110558
Author(s):  
Yong Kim Hwang ◽  
Mohd Zamri Ibrahim ◽  
Marzuki Ismail ◽  
Ali Najah Ahmed ◽  
Aliashim Albani

This study aimed to create a Malaysian wind map of greater accuracy. Compared to a previous wind map, spatial modeling input was increased. The Genetic Algorithm-optimized Artificial Neural Network Measure–Correlate–Predict method was used to impute missing data, and managed to control over- or under-prediction issues. The established wind map was made more reliable by including surface roughness to simulate wind flow over complex terrain. Validation revealed that the current wind map is 33.833% more accurate than the previous wind map. Furthermore, the correlation coefficient between wind map-simulated data and observed data was high as 0.835. In conclusion, the new and improved wind map for Malaysia simulates data with acceptable accuracy.


2006 ◽  
Vol 128 (4) ◽  
pp. 539-553 ◽  
Author(s):  
John Prospathopoulos ◽  
Spyros G. Voutsinas

Practical aspects concerning the use of 3D Navier-Stokes solvers as prediction tools for micro-siting of wind energy installations are considered. Micro-siting is an important issue for a successful application of wind energy in sites of complex terrain. There is a constantly increasing interest in using mean wind flow predictions based on Reynolds averaged Navier-Stokes (RANS) solvers in order to minimize the number of required field measurements. In this connection, certain numerical aspects, such as the extent of the numerical flow domain, the choice of the appropriate inflow boundary conditions, and the grid resolution, can decisively affect the quality of the predictions. In the present paper, these aspects are analyzed with reference to the Askervein hill data base of full scale measurements. The objective of the work is to provide guidelines with respect to the definition of appropriate boundary conditions and the construction of an adequate and effective computational grid when a RANS solver is implemented. In particular, it is concluded that (a) the ground roughness affects the predictions significantly, (b) the computational domain should have an extent permitting the full development of the flow before entering the region of interest, and (c) the quality of the predictions at the local altitude maxima depends on the grid density in the main flow direction.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 137 ◽  
Author(s):  
Mingrui Liu ◽  
Xiuling Wang

Three-dimensional urban wind field construction plays an important role not only in the analysis of pedestrian levels of comfort but also in the effectiveness of harnessing wind energy in an urban environment. However, it is challenging to accurately simulate urban wind flow due to the complex land use in urban environments. In this study, a three-dimensional numerical model was developed for urban wind flow construction. To obtain an accurate urban wind field, various turbulence models, including the Reynolds stress model (RSM), k-ω shear stress transport (SST), realizable k-ε, and (Re-Normalisation Group (RNG) k-ε models were tested. Simulation results were compared with experimental data in the literature. The RSM model showed promising potential in simulating urban wind flow. The model was then adopted to simulate urban wind flow for Purdue University Northwest, which is located in the Northwest Indiana urban region. Based on the simulation results, the optimal location was identified for urban wind turbine siting.


Sign in / Sign up

Export Citation Format

Share Document