scholarly journals Three-Dimensional Wind Field Construction and Wind Turbine Siting in an Urban Environment

Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 137 ◽  
Author(s):  
Mingrui Liu ◽  
Xiuling Wang

Three-dimensional urban wind field construction plays an important role not only in the analysis of pedestrian levels of comfort but also in the effectiveness of harnessing wind energy in an urban environment. However, it is challenging to accurately simulate urban wind flow due to the complex land use in urban environments. In this study, a three-dimensional numerical model was developed for urban wind flow construction. To obtain an accurate urban wind field, various turbulence models, including the Reynolds stress model (RSM), k-ω shear stress transport (SST), realizable k-ε, and (Re-Normalisation Group (RNG) k-ε models were tested. Simulation results were compared with experimental data in the literature. The RSM model showed promising potential in simulating urban wind flow. The model was then adopted to simulate urban wind flow for Purdue University Northwest, which is located in the Northwest Indiana urban region. Based on the simulation results, the optimal location was identified for urban wind turbine siting.

2018 ◽  
Vol 32 (12n13) ◽  
pp. 1840038 ◽  
Author(s):  
Lin-Lin Tian ◽  
Ning Zhao ◽  
Yi-Lei Song ◽  
Chun-Ling Zhu

This work is devoted to perform systematic sensitivity analysis of different turbulence models and various inflow boundary conditions in predicting the wake flow behind a horizontal axis wind turbine represented by an actuator disc (AD). The tested turbulence models are the standard k–[Formula: see text] model and the Reynolds Stress Model (RSM). A single wind turbine immersed in both uniform flows and in modeled atmospheric boundary layer (ABL) flows is studied. Simulation results are validated against the field experimental data in terms of wake velocity and turbulence intensity.


Author(s):  
Ahmed M Nagib Elmekawy ◽  
Hassan A Hassan Saeed ◽  
Sadek Z Kassab

Three-dimensional CFD simulations are carried out to study the increase of power generated from Savonius vertical axis wind turbines by modifying the blade shape and blade angel of twist. Twisting angle of the classical blade are varied and several proposed novel blade shapes are introduced to enhance the performance of the wind turbine. CFD simulations have been performed using sliding mesh technique of ANSYS software. Four turbulence models; realizable k -[Formula: see text], standard k - [Formula: see text], SST transition and SST k -[Formula: see text] are utilized in the simulations. The blade twisting angle has been modified for the proposed dimensions and wind speed. The introduced novel blade increased the power generated compared to the classical shapes. The two proposed novel blades achieved better power coefficients. One of the proposed models achieved an increase of 31% and the other one achieved 32.2% when compared to the classical rotor shape. The optimum twist angel for the two proposed models achieved 5.66% and 5.69% when compared with zero angle of twist.


2010 ◽  
Vol 297-301 ◽  
pp. 924-929
Author(s):  
Inès Bhouri Baouab ◽  
Nejla Mahjoub Said ◽  
Hatem Mhiri ◽  
Georges Le Palec ◽  
Philippe Bournot

The present work consists in a numerical examination of the dispersion of pollutants discharged from a bent chimney and crossing twin similar cubic obstacles placed in the lee side of the source. The resulting flow is assumed to be steady, three-dimensional and turbulent. Its modelling is based upon the resolution of the Navier Stokes equations by means of the finite volume method together with the RSM (Reynolds Stress Model) turbulent model. This examination aims essentially at detailing the wind flow perturbations, the recirculation and turbulence generated by the presence of the twin cubic obstacles placed tandem at different spacing distances (gaps): W = 4 h, W = 2 h and W = 1 h where W is the distance separating both buildings.


2010 ◽  
Vol 18 (4) ◽  
pp. 321-328 ◽  
Author(s):  
Petras Vaitiekūnas ◽  
Inga Jakštonienė

This paper aims to analyse the problem of numerical modelling of the airflow in a conical reverse‐flow (CRF) cyclone with tangential inlet (equipment for separation of solid particles from gaseous fluid flow). A review of experimental and theoretical papers that describe cyclones with very complex swirling flow is performed. Three‐dimensional transport differential equations for incompressible turbulent flow inside a cyclone are solved numerically using finite volume‐based turbulence models, namely, the Standard k–ϵ model, the RNG k–ϵ model and the Reynolds stress model (RSM). The paper describes the numerical modelling of the airflow in the CRF cyclone, the height of which is 0.75 m, diameter ‐ 0.17 m, height of cylindrical part ‐ 0.255 m, height of conical part ‐ 0.425 m, inlet area is 0.085×0.032 m2. Mathematical model of airflow in a cyclone consisted of Navier‐Stokes (Reynolds) three‐dimensional differential equation system. Modelling results, obtained from the numerical tests when inlet velocity is 4.64, 9.0 and 14.8 m/s and flow rate is, respectively, 0.0112, 0.0245 and 0.0408 (0.0388) m3/s, have demonstrated a reasonable agreement with other authors’ experimental and theoretical results. The average relative error was ± 7.5%. Santrauka Nagrinejama duju aerodinamikos kūginiame grižtamojo srauto (KGS) ciklone (irenginys kietosioms dalelems atskirti iš oro srauto) su tangentiniu srauto itekejimu skaitinio modeliavimo problema. Trimates nespūdžiojo turbulentinio srauto ciklono viduje pernašos diferencialines lygtys skaitiškai sprestos baigtiniu tūriu metodu taikant standartini k–ϵ, RNG k–ϵ ir Reinoldso itempiu (RIM) turbulencijos modelius. Atliktas skaitinis oro srauto judejimo KGS ciklone modeliavimas. Ciklono aukštis – 0,75 m, skersmuo ‐ 0,17 m, cilindrines dalies aukšti ‐ 0,255 m, kūgines ‐ 0,425 m, itekejimo angos plotas 0,085×0,032 m2. Oro srauto judejimo ciklone matematinis modelis – Navje ir Stokso (Reinoldso) trimačiu diferencialiniu lygčiu sistema. Modeliavimo rezultatai, kai itekejimo greitis 4,64, 9,0 bei 14,8 m/s ir debitas – 0,0112, 0,0245 ir 0,0408 (0,0388) m3/s, neblogai sutapo su kitu autoriu eksperimentiniais rezultatais. Vidutine santykine paklaida ‐ ± 8 proc. Резюме Анализируется проблема аэродинамики газового потока в коническом возвратного потока (КВП) циклоне (оборудование для отделения твердых частиц от газового потока) с тангенциальной подачей газа. Произведен обзор экспериментальных и теоретических работ в циклонах такого типа, в которых образуется сложное вихревое течение потока. Для моделирования использованы трехмерные дифференциальные уравнения переноса, численно решаемые методом конечных объемов с использованием следующих моделей: стaндартной k–e, RNG k–e и рейнольдсовой модели турбулентности напряжений. Произведено численное моделирование движения потока воздуха в циклоне КВП, высота которого 0,75 м, диаметр – 0,17 м, высота цилиндрической части – 0,255 м, конической части – 0,425 м, площадь входного отверстия – 0,085×0,032 м 2 . Математическую модель движения потока воздуха в циклоне составила система трехмерных дифференциальных уравнений Навье-Стокса и Рейнольдса. Анализ результатов, произведенный при скоростях втекания в циклон 4,64, 9,0 и 14,8 м/с (дебит – 0,0112, 0,0245 и 0,0408 м 3 /c) и для модели рейнольдсовых напряжений, показал приемлемую согласованность с результатами других исследователей – со средней относительной погрешностью ± 7,5 проц.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Yan Xu ◽  
Zunce Wang ◽  
Lin Ke ◽  
Sen Li ◽  
Jinglong Zhang

Reynolds Stress Model and Large Eddy Simulation are used to respectively perform numerical simulation for the flow field of a hydrocyclone. The three-dimensional hexahedral computational grids were generated. Turbulence intensity, vorticity, and the velocity distribution of different cross sections were gained. The velocity simulation results were compared with the LDV test results, and the results indicated that Large Eddy Simulation was more close to LDV experimental data. Large Eddy Simulation was a relatively appropriate method for simulation of flow field within a hydrocyclone.


2013 ◽  
Vol 40 (7) ◽  
pp. 603-612 ◽  
Author(s):  
Mehrdad Shademan ◽  
Ram Balachandar ◽  
Ronald M. Barron

Three-dimensional steady Reynolds Averaged Navier-Stokes simulations have been carried out to investigate the effect of the nozzle stand-off distance on the mean and turbulence characteristics of jets impinging vertically on flat surfaces. As part of the study, the performance of different turbulence models such as Realizable k–ε, k–ω SST, and Reynolds Stress Model (RSM) were evaluated. Based on comparisons with experimental data, RSM was chosen to further evaluate the characteristics of impinging jets. The Reynolds number based on the jet exit velocity and nozzle diameter is 100 000. Three different nozzle height-to-diameter ratios, representing different types of impinging jets, were simulated and compared with available experimental data. A strong dependency of the jet characteristics on the nozzle height-to-diameter ratio was observed. The simulations show that an increase in this ratio results in larger shear stress and more distributed pressure on the wall, more development of the flow in the axial direction and faster progress of the jet in the wall region. The current simulations present a robust step-by-step computational fluid dynamics approach to investigate the role of the nozzle height-to-diameter ratio on the impinging jet flow parameters.


Author(s):  
L. J. Lenke ◽  
H. Simon

The numerical simulation of the flow within a return channel is reported in this paper. The investigated return channel is typically to join the exit from one stage of a centrifugal machine to the inlet of the next stage. These channel covers the range of extremely low flow coefficients. Different 3-D calculations with two different turbulence models (low-Reynolds-number k-ϵ and explicit algebraic Reynolds stress model) at the design point and part load range show the strongly three-dimensional flow structure with secondary flows on hub and shroud of the deswirl vanes. There are also significant separations downstream of the 180°-bend at suction and pressure side of the vanes. The presented numerical results are compared with experimental data in different planes and at the vane contour. The results indicate small differences between the turbulence models in the prediction of losses, flow angles and separation behavior at design point. At off-design conditions the turbulence models begin to deviate notably in their prediction of separation.


Author(s):  
Muhammad Bilal ◽  
Narendran Sridhar ◽  
Guillermo Araya ◽  
Sivapathas Parameswaran ◽  
Yngve Birkelund

The understanding of atmospheric flows is crucial in the analysis of dispersion of a contaminant or pollutant, wind energy and air-quality assessment to name a few. Additionally, the effects of complex terrain and associated orographic forcing are crucial in wind energy production. Furthermore, the use of the Reynolds-averaged Navier-Stokes (RANS) equations in the analysis of complex terrain is still considered the “workhorse” since millions of mesh points are required to accurately capture the details of the surface. On the other hand, solving the same problem by means of the instantaneous governing equations of the flow (i.e., in a suite of DNS or LES) would imply almost prohibitive computational resources. In this study, numerical predictions of atmospheric boundary layers are performed over a complex topography located in Nygårdsfjell, Norway. The Nygårdsfjell wind farm is located in a valley at approximately 420 meters above sea level surrounded by mountains in the north and south near the Swedish border. Majority of the winds are believed to be originated from Torneträsk lake in the east which is covered with ice during the winter time. The air closest to the surface on surrounding mountains gets colder and denser. The air then slides down the hill and accumulates over the lake. Later, the air spills out westward towards Ofotfjord through the broader channel that directs and transforms it into highly accelerated winds. Consequently, one of the objectives of the present article is to study the influence of local terrain on shaping these winds over the wind farm. It is worth mentioning that we are not considering any wind turbine model in the present investigation, being the main purpose to understand the influence of the local surface topography and roughness on the wind flow. Nevertheless, future research will include modeling the presence of a wind turbine and will be published elsewhere. The governing equations of the flow are solved by using a RANS approach and by considering three different two-equation turbulence models: k-omega (k–ω), k-epsilon (k–ε) and shear stress transport (SST). Furthermore, the real topographical characteristics of the terrain have been modeled by extracting the required area from the larger digital elevation model (DEM) spanning over 100 km square. The geometry is then extruded using Rhino and meshed in ANSYS Fluent. The terrain dimensions are approximately 2000×1000 meter square.


2005 ◽  
Vol 127 (2) ◽  
pp. 214-222 ◽  
Author(s):  
F. Bertagnolio ◽  
N. N. Sørensen ◽  
F. Rasmussen

The objective of this paper is an improved understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. Two- and three-dimensional Navier–Stokes calculations of the flow around a wind turbine airfoil using the k−ω SST and Detached Eddy Simulation (DES) turbulence models, as well as an engineering semiempirical dynamic stall model, are conducted. The computational results are compared to the experimental results that are available for both the static airfoil and the pitching airfoil. It is shown that the Navier–Stokes simulations can reproduce the main characteristic features of the flow. The DES model seems to be able to reproduce most of the details of the unsteady aerodynamics. Aerodynamic work computations indicate that a plunging motion of the airfoil can become unstable.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5121 ◽  
Author(s):  
Jae-ho Jeong ◽  
Kwangtae Ha

The performance of wind turbines is not only dependent on the wind turbine design itself, but is also dependent on the accurate assessment of wind resources at the installation site. In this paper, the numerical site calibration (NSC) method using three-dimensional Reynolds-averaged Navier–Stokes (RANS) simulation was proposed to accurately forecast the wind flow characteristics of wind turbine sites with complex terrains, namely Methil in Scotland, and Haenam in South Korea. From NSC at the Methil and Haenam sites, it was shown that the complicated and vortical flow fields around hills and valleys were captured using the three-dimensional RANS CFD simulation in Ansys CFX software based on a high-resolution scheme with a renormalization group (RNG)-based k-ε turbulence model. It was also shown that topographically induced wind profile and turbulence intensity over a local-scale complex terrain are remarkably dominated by flow separation after passing hills. It was concluded that the proposed NSC method using three-dimensional RANS simulation with a high-resolution scheme was an economically useful method for evaluating wind flow characteristics numerically to assess wind turbine sites with complex terrains and designing the wind farm layout.


Sign in / Sign up

Export Citation Format

Share Document