Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

2016 ◽  
Vol 89 ◽  
pp. 80-90 ◽  
Author(s):  
A. Soueid Ahmed ◽  
A. Jardani ◽  
A. Revil ◽  
J.P. Dupont
2014 ◽  
Vol 50 (4) ◽  
pp. 3502-3522 ◽  
Author(s):  
A. Soueid Ahmed ◽  
A. Jardani ◽  
A. Revil ◽  
J. P. Dupont

2011 ◽  
Vol 407 (1-4) ◽  
pp. 115-128 ◽  
Author(s):  
Salvatore Straface ◽  
Francesco Chidichimo ◽  
Enzo Rizzo ◽  
Monica Riva ◽  
Warren Barrash ◽  
...  

2021 ◽  
Author(s):  
Behzad Pouladiborj ◽  
Olivier Bour ◽  
Niklas Linde ◽  
Laurent Longuevergne

<p>Hydraulic tomography is a state of the art method for inferring hydraulic conductivity fields using head data. Here, a numerical model is used to simulate a steady-state hydraulic tomography experiment by assuming a Gaussian hydraulic conductivity field (also constant storativity) and generating the head and flux data in different observation points. We employed geostatistical inversion using head and flux data individually and jointly to better understand the relative merits of each data type. For the typical case of a small number of observation points, we find that flux data provide a better resolved hydraulic conductivity field compared to head data when considering data with similar signal-to-noise ratios. In the case of a high number of observation points, we find the estimated fields to be of similar quality regardless of the data type. A resolution analysis for a small number of observations reveals that head data averages over a broader region than flux data, and flux data can better resolve the hydraulic conductivity field than head data. The inversions' performance depends on borehole boundary conditions, with the best performing setting for flux data and head data are constant head and constant rate, respectively. However, the joint inversion results of both data types are insensitive to the borehole boundary type. Considering the same number of observations, the joint inversion of head and flux data does not offer advantages over individual inversions. By increasing the hydraulic conductivity field variance, we find that the resulting increased non-linearity makes it more challenging to recover high-quality estimates of the reference hydraulic conductivity field. Our findings would be useful for future planning and design of hydraulic tomography tests comprising the flux and head data.</p>


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. B259-B273 ◽  
Author(s):  
A. Revil ◽  
M. Karaoulis ◽  
S. Srivastava ◽  
S. Byrdina

Self-potential signals and resistivity data can be jointly inverted or analyzed to track the position of the burning front of an underground coal-seam fire. We first investigate the magnitude of the thermoelectric coupling associated with the presence of a thermal anomaly (thermoelectric current associated with a thermal gradient). A sandbox experiment is developed and modeled to show that in presence of a heat source, a negative self-potential anomaly is expected at the ground surface. The expected sensitivity coefficient is typically on the order of [Formula: see text] in a silica sand saturated by demineralized water. Geophysical field measurements gathered at Marshall (near Boulder, CO) show clearly the position of the burning front in the electrical resistivity tomogram and in the self-potential data gathered at the ground surface with a negative self-potential anomaly of about [Formula: see text]. To localize more accurately the position of the burning front, we developed a strategy based on two steps: (1) We first jointly invert resistivity and self-potential data using a cross-gradient approach, and (2) a joint interpretation of the resistivity and self-potential data is made using a normalized burning front index (NBI). The value of the NBI ranges from 0 to 1 with 1 indicating a high probability to find the burning front (strictly speaking, the NBI is, however, not a probably density). We validate first this strategy using synthetic data and then we apply it to the field data. A clear source is localized at the expected position of the burning front of the coal-seam fire. The NBI determined from the joint inversion is only slightly better than the value determined from independent inversion of the two geophysical data sets.


Sign in / Sign up

Export Citation Format

Share Document