scholarly journals Abundant wave solutions of conformable space-time fractional order Fokas wave model arising in physical sciences

2021 ◽  
Vol 60 (2) ◽  
pp. 2687-2696
Author(s):  
Shahzad Sarwar ◽  
Khaled M. Furati ◽  
Muhammad Arshad
Author(s):  
Jalil Manafian ◽  
Onur Alp Ilhan ◽  
Laleh Avazpour

AbstractIn this paper, some new nonlinear fractional partial differential equations (PDEs) have been considered.Three models are including the space-time fractional-order Boussinesq equation, space-time (2 + 1)-dimensional breaking soliton equations, and space-time fractional-order SRLW equation describe the behavior of these equations in the diverse applications. Meanwhile, the fractional derivatives in the sense of β-derivative are defined. Some fractional PDEs will convert to the considered ordinary differential equations by the help of transformation of β-derivative. These equations are analyzed utilizing an integration scheme, namely, the extended auxiliary equation mapping method. The different kinds of traveling wave solutions, solitary, topological, dark soliton, periodic, kink, and rational, fall out as a by-product of this scheme. Finally, the existence of the solutions for the constraint conditions is also shown. The outcome indicates that some fractional PDEs are used as a growing finding in the engineering sciences, mathematical physics, and so forth.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mostafa M. A. Khater ◽  
Choonkil Park ◽  
Jung Rye Lee ◽  
Mohamed S. Mohamed ◽  
Raghda A. M. Attia

AbstractThe accuracy of analytical obtained solutions of the fractional nonlinear space–time telegraph equation that has been constructed in (Hamed and Khater in J. Math., 2020) is checked through five recent semi-analytical and numerical techniques. Adomian decomposition (AD), El Kalla (EK), cubic B-spline (CBS), extended cubic B-spline (ECBS), and exponential cubic B-spline (ExCBS) schemes are used to explain the matching between analytical and approximate solutions, which shows the accuracy of constructed traveling wave solutions. In 1880, Oliver Heaviside derived the considered model to describe the cutting-edge or voltage of an electrified transmission. The matching between solutions has been explained by plotting them in some different sketches.


Sign in / Sign up

Export Citation Format

Share Document