scholarly journals A novel Covid-19 model with fractional differential operators with singular and non-singular kernels: Analysis and numerical scheme based on Newton polynomial

2021 ◽  
Vol 60 (4) ◽  
pp. 3781-3806 ◽  
Author(s):  
Abdon Atangana ◽  
Seda İĞret araz
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 594-612 ◽  
Author(s):  
Abdon Atangana ◽  
Emile Franc Doungmo Goufo

AbstractHumans are part of nature, and as nature existed before mankind, mathematics was created by humans with the main aim to analyze, understand and predict behaviors observed in nature. However, besides this aspect, mathematicians have introduced some laws helping them to obtain some theoretical results that may not have physical meaning or even a representation in nature. This is also the case in the field of fractional calculus in which the main aim was to capture more complex processes observed in nature. Some laws were imposed and some operators were misused, such as, for example, the Riemann–Liouville and Caputo derivatives that are power-law-based derivatives and have been used to model problems with no power law process. To solve this problem, new differential operators depicting different processes were introduced. This article aims to clarify some misunderstandings about the use of fractional differential and integral operators with non-singular kernels. Additionally, we suggest some numerical discretizations for the new differential operators to be used when dealing with initial value problems. Applications of some nature processes are provided.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Sheng Hu ◽  
Ravi P. Agarwal ◽  
Xiao-Jun Yang

We introduce the wave equation in fractal vibrating string in the framework of the local fractional calculus. Our particular attention is devoted to the technique of the local fractional Fourier series for processing these local fractional differential operators in a way accessible to applied scientists. By applying this technique we derive the local fractional Fourier series solution of the local fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-Leffler function.


2017 ◽  
Vol 17 (4) ◽  
pp. 661-678 ◽  
Author(s):  
Harbir Antil ◽  
Sören Bartels

AbstractFractional differential operators provide an attractive mathematical tool to model effects with limited regularity properties. Particular examples are image processing and phase field models in which jumps across lower dimensional subsets and sharp transitions across interfaces are of interest. The numerical solution of corresponding model problems via a spectral method is analyzed. Its efficiency and features of the model problems are illustrated by numerical experiments.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


2021 ◽  
Vol 10 (1) ◽  
pp. 231-239
Author(s):  
Kashif Ali Abro ◽  
Abdon Atangana ◽  
Ali Raza Khoso

Abstract The complex structures usually depend upon unconstrained and constrained simply supported beams because the passive damping is applied to control vibrations or dissipate acoustic energies involved in aerospace and automotive industries. This manuscript aims to present an analytic study of a simply supported beam based on the modern fractional approaches namely Caputo-Fabrizio and Atanagna-Baleanu fractional differential operators. The governing equation of motion is fractionalized for knowing the vivid effects of principal parametric resonances. The powerful techniques of Laplace and Fourier sine transforms are invoked for investigating the exact solutions with fractional and non-fractional approaches. The analytic solutions are presented in terms of elementary as well as special functions and depicted for graphical illustration based on embedded parameters. Finally, effects of the amplitude of vibrations and the natural frequency are discussed based on the sensitivities of dynamic characteristics of simply supported beam.


2018 ◽  
Author(s):  
Rubens De Figueiredo Camargo ◽  
Eliana Contharteze Grigoletto ◽  
Edmundo Capelas De Oliveira

Sign in / Sign up

Export Citation Format

Share Document