A stochastic model of urinary nitrogen and water flow in grassland soil in New Zealand

2007 ◽  
Vol 120 (2-4) ◽  
pp. 145-152 ◽  
Author(s):  
P.R. Shorten ◽  
A.B. Pleasants
2021 ◽  
Author(s):  
Leighton M Watson

Aim: The August 2021 COVID-19 outbreak in Auckland has caused the New Zealand government to transition from an elimination strategy to suppression, which relies heavily on high vaccination rates in the population. As restrictions are eased and as COVID-19 leaks through the Auckland boundary, there is a need to understand how different levels of vaccination will impact the initial stages of COVID-19 outbreaks that are seeded around the country. Method: A stochastic branching process model is used to simulate the initial spread of a COVID-19 outbreak for different vaccination rates. Results: High vaccination rates are effective at minimizing the number of infections and hospitalizations. Increasing vaccination rates from 20% (approximate value at the start of the August 2021 outbreak) to 80% (approximate proposed target) of the total population can reduce the median number of infections that occur within the first four weeks of an outbreak from 1011 to 14 (25th and 75th quantiles of 545-1602 and 2-32 for V=20% and V=80%, respectively). As the vaccination rate increases, the number of breakthrough infections (infections in fully vaccinated individuals) and hospitalizations of vaccinated individuals increases. Unvaccinated individuals, however, are 3.3x more likely to be infected with COVID-19 and 25x more likely to be hospitalized. Conclusion: This work demonstrates the importance of vaccination in protecting individuals from COVID-19, preventing high caseloads, and minimizing the number of hospitalizations and hence limiting the pressure on the healthcare system.


2021 ◽  
Vol 8 (9) ◽  
Author(s):  
Michael J. Plank ◽  
Rachelle N. Binny ◽  
Shaun C. Hendy ◽  
Audrey Lustig ◽  
Kannan Ridings

Throughout 2020 and the first part of 2021, Australia and New Zealand have followed a COVID-19 elimination strategy. Both countries require overseas arrivals to quarantine in government-managed facilities at the border. In both countries, community outbreaks of COVID-19 have been started via infection of a border worker. This workforce is rightly being prioritized for vaccination. However, although vaccines are highly effective in preventing disease, their effectiveness in preventing infection with and transmission of SARS-CoV-2 is less certain. There is a danger that vaccination could prevent symptoms of COVID-19 but not prevent transmission. Here, we use a stochastic model of SARS-CoV-2 transmission and testing to investigate the effect that vaccination of border workers has on the risk of an outbreak in an unvaccinated community. We simulate the model starting with a single infected border worker and measure the number of people who are infected before the first case is detected by testing. We show that if a vaccine reduces transmission by 50%, vaccination of border workers increases the risk of a major outbreak from around 7% per seed case to around 9% per seed case. The lower the vaccine effectiveness against transmission, the higher the risk. The increase in risk as a result of vaccination can be mitigated by increasing the frequency of routine testing for high-exposure vaccinated groups.


2012 ◽  
Vol 60 (4) ◽  
pp. 309-318 ◽  
Author(s):  
Ľubomír Lichner ◽  
Ladislav Holko ◽  
Natalia Zhukova ◽  
Karsten Schacht ◽  
Kálmán Rajkai ◽  
...  

This study tested the hypothesis that the changes in hydrophysical parameters and heterogeneity of water flow in an aeolian sandy soil have the same trend as the process of succession. Three sub-sites were demarcated at the area of about 50 m x 50 m. The first sub-site was located at the pine-forest glade covered with a biological soil crust and represented the initial stage of succession. The second sub-site was located at the grassland and represented more advanced stage of succession. The third sub-site was located at the pine forest with 30-year old Scots pines and represented advanced stage (close to climax) of succession. The sandy soil at the surface was compared to the soil at the pine-forest glade at 50 cm depth, which served as a control because it had a similar texture but limited impact of vegetation or organic matter. It was found that any type of vegetation cover studied had a strong influence on hydrophysical parameters and heterogeneity of water flow in an aeolian sandy soil during hot and dry spells. The changes in some hydrophysical parameters (WDPT, R, k(-2 cm), Sw(-2 cm), ECS and DPF) and heterogeneity of water flow in an aeolian sandy soil had the same trend as the process of succession, but it was not so in the case of Ksand Se(-2 cm), probably due to the higher content of smaller soil particles in grassland soil in comparison with that content at other sub-sites. Both the persistence and index of water repellency of pure sand differed significantly from those of grassland, glade and forest soils. The highest repellency parameter values in forest soil resulted in the lowest value of both the water sorptivity and hydraulic conductivity in this soil in comparison with other soils studied. The highest value of ethanol sorptivity and the lowest value of saturated hydraulic conductivity in the grassland soil in comparison with other soils studied were due to the higher content of fine-grained (silt and clay) particles in the grassland soil. The effective cross section and the degree of preferential flow of pure sand differed significantly from those of grassland, glade and forest soils. The change in soil hydrophysical parameters due to soil water repellency resulted in preferential flow in the grassland, glade and forest soils, while the wetting front in pure sand area exhibited a form typical of that for stable flow. The latter shape of the wetting front can be expected in the studied soils in spring, when soil water repellency is alleviated substantially. The columnar shape of the wetting front, which can be met during heavy rains following long dry and hot spells, was attributed to redistribution of applied water on the surface to a series of micro-catchments, which acted as runon and runoff zones.


Author(s):  
D. Brayford

Abstract A description is provided for Fusarium tumidum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Leguminosae. DISEASE: Infects pods and is associated with circular stem lesions and tip dieback. GEOGRAPHICAL DISTRIBUTION: Germany, New Zealand. Possibly more widespread in temperate regions, but not reported. TRANSMISSION: Conidia are dispersed locally by water flow and splash droplets.


1991 ◽  
Vol 27 (7) ◽  
pp. 1439-1446 ◽  
Author(s):  
S. A. Grant ◽  
J. D. Jabro ◽  
D. D. Fritton ◽  
D. E. Baker

Sign in / Sign up

Export Citation Format

Share Document