soil water flow
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 25)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 25 (9) ◽  
pp. 4835-4860
Author(s):  
Jan Vanderborght ◽  
Valentin Couvreur ◽  
Felicien Meunier ◽  
Andrea Schnepf ◽  
Harry Vereecken ◽  
...  

Abstract. Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implement root hydraulics in macroscopic soil water flow and land surface models. By upscaling a three-dimensional hydraulic root architecture model, we derived an exact macroscopic root hydraulic model. The macroscopic model uses the following three characteristics: the root system conductance, Krs, the standard uptake fraction, SUF, which represents the uptake from a soil profile with a uniform hydraulic head, and a compensatory matrix that describes the redistribution of water uptake in a non-uniform hydraulic head profile. The two characteristics, Krs and SUF, are sufficient to describe the total uptake as a function of the collar and soil water potential, and water uptake redistribution does not depend on the total uptake or collar water potential. We compared the exact model with two hydraulic root models that make a priori simplifications of the hydraulic root architecture, i.e., the parallel and big root model. The parallel root model uses only two characteristics, Krs and SUF, which can be calculated directly following a bottom-up approach from the 3D hydraulic root architecture. The big root model uses more parameters than the parallel root model, but these parameters cannot be obtained straightforwardly with a bottom-up approach. The big root model was parameterized using a top-down approach, i.e., directly from root segment hydraulic properties, assuming a priori a single big root architecture. This simplification of the hydraulic root architecture led to less accurate descriptions of root water uptake than by the parallel root model. To compute root water uptake in macroscopic soil water flow and land surface models, we recommend the use of the parallel root model with Krs and SUF computed in a bottom-up approach from a known 3D root hydraulic architecture.


2021 ◽  
Vol 9 (1) ◽  
pp. 31-40
Author(s):  
Lisma Safitri ◽  
Andiko Putro Suryotomo ◽  
Satyanto Krido Saptomo

The lack of water resource in these past decades encourages the implementation of the precision agriculture system towards the sustainability in palm oil plantation. Therefore, it requires a specific information about the palm oil performance regarding the water balance system that affect the water consumption through the plant root water uptake. However, the prediction of root water uptake distribution is still a challenge. Another method to investigate the soil water dynamics under the plant root system is through the numerical simulations that are widely use to assess the soil water flow of the plant. In alignment with the idea of promoting the sustainable palm oil plantation, the investigation of root water uptake and water content under oil palm tree is highly demanding. As an introduction, through this study, it is find of interest to simulate the root water uptake and water content pattern of oil palm tree using the 2D simulation soil-water flow.  The study was performed by applying the 2D simulation soil-water flow model to 17th year old oil palm tree located in Siak, Riau with the loam soil type. The climate data was used as primary data to predict the rate of evapotranspiration. The soil properties and root dimension and distribution of oil palm was taken by the literature study. The simulation over 30 days illustrated the root water uptake distribution, water content change, pressure head and flow velocity. The most intensive root water uptake occurred in the upper root zone of oil palm tree as an impact of the higher root density. The significant root water uptake in the upper root zone lead to the decreasing of water content and increasing of pressure head in the soil.  Consequently, there was a change of water flow direction from the wet area in the downward and sideward do dry root zone as the water supply to the oil palm tree.  


2021 ◽  
Vol 209 ◽  
pp. 104952
Author(s):  
Amirreza Sheikhbaglou ◽  
Habib Khodaverdiloo ◽  
Kamran Zeinalzadeh ◽  
Hossein Kheirfam ◽  
Nasrin Azad

2021 ◽  
Author(s):  
Vedran Krevh ◽  
Jasmina Defterdarović ◽  
Lana Filipović ◽  
Zoran Kovač ◽  
Steffen Beck-Broichsitter ◽  
...  

<p>SUPREHILL is a new (2020) and first Croatian critical zone observatory (CZO), focused on local scale agricultural e.g., vineyard hillslope processes. The experimental setup includes an extensive sensor-based network accompanied by weighing lysimeters and instruments for surface and subsurface hydrology measurement. The field measurements are supported by novel laboratory and numerical quantification methods for the determination of water flow and solute transport. This combined approach will allow the research team to accurately determine soil water balance components (soil water flow, preferential flow/transport pathways, surface runoff, evapotranspiration), the temporal origin of water in hillslope hydrology (isotopes), transport of agrochemicals, and to calibrate and validate numerical modeling procedures for describing and predicting soil water flow and solute transport. First results from sensors indicate increased soil moisture on the hilltop, which is supported by precipitation data from rain gauges and weighing lysimeters. The presence of a compacted soil horizon and compacted inter-row parts (due to trafficking) of the vineyard seems to be highly relevant in regulating water dynamics. Wick lysimeters confirm the sensor soil moisture data, while showing a significant difference in its repetitions which suggests a possibility of a preferential flow imposed by local scale soil heterogeneity. Measured values of surface and subsurface runoff suggest a crucial role of these processes in the hillslope hydrology, while slope and structure dynamics additionally influence soil hydraulic properties. We are confident that the CZO will give us new insights in the landscape heterogeneity and substantially increase our understanding regarding preferential flow and nonlinear solute transport, with results directly applicable in agricultural (sloped agricultural soil management) and environmental (soil and water) systems. Challenges remain in characterizing local scale soil heterogeneity, dynamic properties quantification and scaling issues for which we will rely on combining CZO focused measurements and numerical modeling after substantial data is collected.</p>


2021 ◽  
Author(s):  
Lukas Riedel ◽  
Hannes Helmut Bauser ◽  
Robert Maiwald ◽  
Santiago Ospina De Los Ríos

<div> <div>Soil water flow is a key hydrological process supporting several ecosystem services. The non-linear soil hydraulic material properties have a profound influence on the flow dynamics and cannot be measured directly. They can be estimated with data assimilation based on measurements of the soil hydraulic state. As soils feature a multi-scale architecture, these measurements typically cannot resolve the soil heterogeneity on the relevant spatial and estimating it becomes difficult. In a previous study, we estimated a one-dimensional effective representation of a synthetic, two-dimensional, heterogeneous domain based on a vertical measurement profile using an ensemble Kalman filter. The estimated one-dimensional model represented the dynamics of the soil water movement sufficiently well, but it remained unclear if these results can be transferred to associated physical processes.</div> <br><div>Soil water flow also transports solutes between surface and groundwater. The accurate description of solute fluxes and concentrations is crucial for predicting groundwater quality and contamination. In this study, we use the aforementioned estimated, one-dimensional representation of the domain to simulate and forecast passive solute transport within the soil water flow. We examine its predictive capabilities by comparing these results with results obtained from the two-dimensional, heterogeneous synthetic truth from which artificial measurements are extracted.</div> </div>


2021 ◽  
Vol 21 (4) ◽  
pp. 1598-1608
Author(s):  
Wei Zhu ◽  
Jingsong Yang ◽  
Rongjiang Yao ◽  
Xiangping Wang ◽  
Wenping Xie ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 511
Author(s):  
Ali Ercan ◽  
M. Levent Kavvas

Significant deviations from standard Boltzmann scaling, which corresponds to normal or Fickian diffusion, have been observed in the literature for water movement in porous media. However, as demonstrated by various researchers, the widely used conventional Richards equation cannot mimic anomalous diffusion and ignores the features of natural soils which are heterogeneous. Within this framework, governing equations of transient water flow in porous media in fractional time and multi-dimensional fractional soil space in anisotropic media were recently introduced by the authors by coupling Brooks–Corey constitutive relationships with the fractional continuity and motion equations. In this study, instead of utilizing Brooks–Corey relationships, empirical expressions, obtained by least square fits through hydraulic measurements, were utilized to show the suitability of the proposed fractional approach with other constitutive hydraulic relations in the literature. Next, a finite difference numerical method was proposed to solve the fractional governing equations. The applicability of the proposed fractional governing equations was investigated numerically in comparison to their conventional counterparts. In practice, cumulative infiltration values are observed to deviate from conventional infiltration approximation, or the wetting front through time may not be consistent with the traditional estimates of Richards equation. In such cases, fractional governing equations may be a better alternative for mimicking the physical process as they can capture sub-, super-, and normal-diffusive soil water flow processes during infiltration.


Sign in / Sign up

Export Citation Format

Share Document