Field scale quantification indicates potential for variability in return flows from flood irrigation in the high altitude western US

2020 ◽  
Vol 232 ◽  
pp. 106062
Author(s):  
Beatrice L. Gordon ◽  
Ginger B. Paige ◽  
Scott N. Miller ◽  
Niels Claes ◽  
Andrew D. Parsekian
Soil Research ◽  
2004 ◽  
Vol 42 (4) ◽  
pp. 355 ◽  
Author(s):  
M. Torabi ◽  
H. R. Salemi ◽  
P. Droogers ◽  
M. Noshadi

This study was conducted to investigate the impact of changes in water management on water and salinity problems and crop production at field and basin level by analysing several probable scenarios. First, a simplified water and salinity basin model (WSBM) was developed for a quick analysis of river basin processes and was combined with the comprehensive field-scale model, SWAP (soil–water–atmosphere–plant). The WSBM model was calibrated and used for water resources analyses in Zayandeh Rud basin in central Iran. Observed and simulated stream flows were similar, proving that the model could be used for scenario analyses. Yield functions for cotton were developed with SWAP, including the impact of water quantity and quality on crop yields and field water and salinity balances. Three scenarios were considered. The first scenario analysed the effect of more efficient irrigation techniques on the basin water resources, where it was assumed that farmers would not accept lower water allocations if they invested in these more efficient techniques. Therefore, return flows would decrease and less water would be available for downstream users. It was concluded that the effect on the downstream irrigation schemes was dramatic, with a 22% decrease in yield. Obviously, upstream yields would increase. A second scenario was defined where the effect of an increase in water extraction for the town of Esfahan was evaluated. In terms of basin-scale water quantity aspects, this increased extraction was negligible as extractions were relatively low and return flows high. The last scenario was developed to study the additional releases required from the reservoir to provide sufficient water for expansion of the tail-end Rudasht irrigation scheme. If no restriction were imposed on water quality, additional releases from the reservoir would be limited. However, if salinity levels were not to exceed 2�dS/m, mean annual water release requirements from the reservoir would increase from 52 to 64 m3/s, and peak requirements during the irrigation season would increase from 85 to 112 m3/s. In this case, the crop yield would increase from 66% (for the baseline scenario) to 73%. Finally, it was concluded that the methodology and the models developed were useful for a swift and transparent analysis of past, current, and future water and salt resources, and to perform scenario analyses.


2019 ◽  
Vol 33 (15) ◽  
pp. 2131-2147 ◽  
Author(s):  
Niels Claes ◽  
Ginger B. Paige ◽  
Andrew D. Parsekian

1994 ◽  
Vol 144 ◽  
pp. 365-367
Author(s):  
E. V. Kononovich ◽  
O. B. Smirnova ◽  
P. Heinzel ◽  
P. Kotrč

AbstractThe Hα filtergrams obtained at Tjan-Shan High Altitude Observatory near Alma-Ata (Moscow University Station) were measured in order to specify the bright rims contrast at different points along the line profile (0.0; ± 0.25; ± 0.5; ± 0.75 and ± 1.0 Å). The mean contrast value in the line center is about 25 percent. The bright rims interpretation as the bases of magnetic structures supporting the filaments is suggested.


Author(s):  
D. M. Davies ◽  
R. Kemner ◽  
E. F. Fullam

All serious electron microscopists at one time or another have been concerned with the cleanliness and freedom from artifacts of thin film specimen support substrates. This is particularly important where there are relatively few particles of a sample to be found for study, as in the case of micrometeorite collections. For the deposition of such celestial garbage through the use of balloons, rockets, and aircraft, the thin film substrates must have not only all the attributes necessary for use in the electron microscope, but also be able to withstand rather wide temperature variations at high altitude, vibration and shock inherent in the collection vehicle's operation and occasionally an unscheduled violent landing.Nitrocellulose has been selected as a film forming material that meets these requirements yet lends itself to a relatively simple clean-up procedure to remove particulate contaminants. A 1% nitrocellulose solution is prepared by dissolving “Parlodion” in redistilled amyl acetate from which all moisture has been removed.


1966 ◽  
Vol 118 (2) ◽  
pp. 132-138 ◽  
Author(s):  
J. S. Sanders
Keyword(s):  

Author(s):  
Renato Contini ◽  
Rudolfs Drillis ◽  
Lawrence Slote
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document