Effects of the chymase inhibitor fulacimstat on adverse cardiac remodeling after acute myocardial infarction—Results of the Chymase Inhibitor in Adverse Remodeling after Myocardial Infarction (CHIARA MIA) 2 trial

2020 ◽  
Vol 224 ◽  
pp. 129-137 ◽  
Author(s):  
Hans-Dirk Duengen ◽  
Raymond J. Kim ◽  
Doron Zahger ◽  
Katia Orvin ◽  
Ran Kornowski ◽  
...  
2021 ◽  
Author(s):  
Sergio Barros‐Gomes ◽  
Véronique L. Roger ◽  
Sorin V. Pislaru ◽  
Toshiyuki Kimura ◽  
Cristina Pislaru ◽  
...  

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Jianrui Song ◽  
Thomas Vigil ◽  
Yutein Chung ◽  
Ryan Frieler ◽  
Sascha Goonewardena ◽  
...  

Introduction: Cardiac remodeling post myocardial infarction (MI) can be a critical determinant of outcome for patients with MI. Well-contained inflammation results in successful infarct healing while excessive inflammation cause adverse remodeling which leads to heart failure. Macrophages are important participants in inflammation, helping resolve pro-inflammatory reactions and performing reparative processes. Reprogramming macrophages towards a resolving and reparative phenotype is a potential therapeutic approach. We hypothesized that IL4/IL13-induced, alternatively activated macrophages (M2) have an important role in cardiac remodeling post-MI, and we tested this hypothesis in a mouse model of MI using myeloid-specific IL4 receptor α knockout mice (MyIL4RaKO). Methods: MyIL4RaKO mice were generated using IL4Ra flox/flox ;LysM-Cre. MI was induced by ligating the left anterior descending coronary artery. Hearts were cut into 1mm sections, and then stained by tetrazolium chloride for infarct size measurement. Evenly spaced radians were taken through the infarct with the center of left ventricle in 5μm heart sections, and the average infarct thickness was calculated. qPCR was used to determine gene expression. Echocardiography was performed at baseline and 3 weeks post MI. Results: Initial infarct size was not affected by IL4Ra knockout but at 1-week post MI, infarct size of MyIL4RaKO mice (16.54 ± 2.433, n=11) was shown significantly smaller than that of FC mice (24.96 ± 2.005, n=15) showing changes in remodeling (p= 0.0129). Changes in remodeling continued and at 3-week post MI, infarct thickness of MyIL4RaKO mice (0.2171 ± 0.01053, n=6) was significantly increased, compared with that of FC mice (0.3508 ± 0.03629, n=8, p= 0.0094). These changes were accompanied by MyIL4RaKO mice also showed lower level of fibrosis markers: Col1A1 and Plod2. A significantly lower ejection fraction was observed in MyIL4RaKO mice (25.46 ± 3.749, n=5) compared with FC mice (37.90 ± 2.309, n=5) at 3 weeks (p= 0.0223). Conclusions: Myeloid-specific IL4Ra knockout results in alteration of remodeling, altered fibrosis and decreased cardiac function post MI, although the cardiac hypertrophy did not show significant change.


2020 ◽  
Vol 26 (1) ◽  
pp. 88-99
Author(s):  
Vasileios Sousonis ◽  
Titika Sfakianaki ◽  
Argirios Ntalianis ◽  
Ioannis Nanas ◽  
Christos Kontogiannis ◽  
...  

Background: Allogeneic cardiosphere-derived cells (CDCs) exert cardioprotective effects when administered intracoronarily after reperfusion in animal models of acute myocardial infarction (AMI). The “no-reflow” phenomenon develops rapidly post-reperfusion and may undermine the efficacy of cell therapy, due to poor cell delivery in areas of microvascular obstruction (MVO). We hypothesized that CDC-induced cardioprotection would be enhanced by cell administration prior to reperfusion, when microvasculature is still relatively intact, to facilitate widespread cell delivery within the ischemic area. Methods and Results: We studied 81 farm pigs; 55 completed the specified protocols. A dose-optimization study in infarcted pigs demonstrated that the doses of 5 million and 10 million CDCs are the maximum safe doses that can be administered intracoronarily at 5 minutes prior to and at 5 minutes post-reperfusion, respectively, without aggravating MVO. Quantification of acute cell retention by polymerase chain reaction demonstrated that cell delivery prior to reperfusion resulted in higher cardiac cell retention compared to delivery post-reperfusion. We then performed a randomized, placebo-controlled study to assess the long-term efficacy of intracoronary infusion of 5 million allogeneic CDCs, delivered at 5 minutes prior to reperfusion, in a porcine model of AMI. The CDC therapy resulted in decreased scar size, improved regional systolic function, and attenuation of adverse cardiac remodeling (manifested as preserved global systolic function, preserved end-systolic volume, and decreased interstitial fibrosis) compared to placebo at 30 days post-MI. Conclusions: Dose-optimized intracoronary infusion of allogeneic CDCs prior to reperfusion in a porcine model of AMI is feasible, safe and confers long-term benefits.


2013 ◽  
Vol 61 (10) ◽  
pp. E179
Author(s):  
Antonio Abbate ◽  
Benjamin van Tassell ◽  
Giuseppe Biondi-Zoccai ◽  
Michael Kontos ◽  
John Grizzard ◽  
...  

ASAIO Journal ◽  
2005 ◽  
Vol 51 (2) ◽  
pp. 27A
Author(s):  
James A Magovern ◽  
Leah Teekell-Taylor ◽  
Uday Dasika ◽  
Walter McGregor ◽  
Sunil Mankad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document