scholarly journals Local convergence of a fifth convergence order method in Banach space

2017 ◽  
Vol 23 (2) ◽  
pp. 205-214
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract In the present paper, we study the local convergence analysis of a fifth convergence order method considered by Sharma and Guha in [15] to solve equations in Banach space. Using our idea of restricted convergence domains we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.


Algorithms ◽  
2015 ◽  
Vol 8 (4) ◽  
pp. 1076-1087 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
S.S. Motsa

Algorithms ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Ioannis K. Argyros

We discuss the local convergence of a derivative-free eighth order method in a Banach space setting. The present study provides the radius of convergence and bounds on errors under the hypothesis based on the first Fréchet-derivative only. The approaches of using Taylor expansions, containing higher order derivatives, do not provide such estimates since the derivatives may be nonexistent or costly to compute. By using only first derivative, the method can be applied to a wider class of functions and hence its applications are expanded. Numerical experiments show that the present results are applicable to the cases wherein previous results cannot be applied.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract The aim of this article is to provide the local convergence analysis of two novel competing sixth convergence order methods for solving equations involving Banach space valued operators. Earlier studies have used hypotheses reaching up to the sixth derivative but only the first derivative appears in these methods. These hypotheses limit the applicability of the methods. That is why we are motivated to present convergence analysis based only on the first derivative. Numerical examples where the convergence criteria are tested are provided. It turns out that in these examples the criteria in the earlier works are not satisfied, so these results cannot be used to solve equations but our results can be used.


2019 ◽  
Vol 8 (1) ◽  
pp. 74-79
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

AbstractThe aim of this study is to extend the applicability of an eighth convergence order method from thek−dimensional Euclidean space to a Banach space setting. We use hypotheses only on the first derivative to show the local convergence of the method. Earlier studies use hypotheses up to the eighth derivative although only the first derivative and a divided difference of order one appear in the method. Moreover, we provide computable error bounds based on Lipschitz-type functions.


2018 ◽  
Vol 27 (1) ◽  
pp. 01-08
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
GEORGE SANTHOSH ◽  

We present a semi-local convergence analysis for a Newton-like method to approximate solutions of equations when the derivative is not necessarily non-singular in a Banach space setting. In the special case when the equation is defined on the real line the convergence domain is improved for this method when compared to earlier results. Numerical results where earlier results cannot apply but the new results can apply to solve nonlinear equations are also presented in this study.


Algorithms ◽  
2015 ◽  
Vol 8 (3) ◽  
pp. 645-655 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
S.S. Motsa

2018 ◽  
Vol 34 (1) ◽  
pp. 85-92
Author(s):  
ION PAVALOIU ◽  

We consider an Aitken-Steffensen type method in which the nodes are controlled by Newton and two-step Newton iterations. We prove a local convergence result showing the q-convergence order 7 of the iterations. Under certain supplementary conditions, we obtain monotone convergence of the iterations, providing an alternative to the usual ball attraction theorems. Numerical examples show that this method may, in some cases, have larger (possibly sided) convergence domains than other methods with similar convergence orders.


Sign in / Sign up

Export Citation Format

Share Document