Relationship Between Corneal Biomechanical Properties, Central Corneal Thickness, and Intraocular Pressure Across the Spectrum of Glaucoma

2012 ◽  
Vol 153 (5) ◽  
pp. 840-849.e2 ◽  
Author(s):  
Sushmita Kaushik ◽  
Surinder Singh Pandav ◽  
Anupam Banger ◽  
Kanika Aggarwal ◽  
Amod Gupta
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander T. Nguyen ◽  
Tiffany Liu ◽  
Ji Liu

Scheimpflug photography is the basis for a variety of imaging devices that are highly versatile. The applications of Scheimpflug imaging are wide in scope, spanning from evaluation of corneal ectasia to quantifying density in nuclear sclerotic cataracts. The potential uses for Scheimpflug-based devices are expanding and a number of them are relevant in glaucoma. In particular, they can provide three-dimensional image reconstruction of the anterior segment which includes assessment of the iridocorneal angle. Photographic analyses allow also for a noncontact method of estimating central corneal thickness (CCT) and intraocular pressure (IOP), as well as the study of various corneal biomechanical properties, which may be useful for stratifying glaucoma risk.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Leonardo Mastropasqua ◽  
Roberta Calienno ◽  
Manuela Lanzini ◽  
Martina Colasante ◽  
Alessandra Mastropasqua ◽  
...  

Purpose.To quantify the effect of small incision lenticule extraction (SMILE) on the corneal biomechanics using Scheimpflug noncontact tonometer (Corvis ST).Methods.Twenty eyes of twenty patients, evaluated as eligible for surgery, with high myopia and/or moderate myopic astigmatism, underwent small incision lenticule extraction (SMILE). All patients underwent Corvis ST preoperatively and postoperatively after 1 week, and 1 and 3 months to observe alterations of corneal biomechanical properties. The main outcome measures were Deformation Amplitude, 1st-AT, and 2nd-AT. The relationship between the amount of stroma removed and the percentage variation of the measured parameters from baseline was evaluated with generalized linear model from each time point. For completeness also intraocular pressure (IOP), central corneal thickness (CCT), and their variations after surgery were evaluated.Results.The ratio between the amount of removed refractive error and, respectively, changes of Deformation Amplitude, 1st-AT, and 2nd-AT were significantly modified at the 1st week after surgery(P=0.005; P=0.001; P=0.024). At 1 and 3 months these values did not show statistically significant alterations. Intraocular pressure and central corneal thickness showed statistically significant changes during follow-up.Conclusions.No significant modifications in biomechanical properties were observed after SMILE so this procedure could induce only minimal transient alterations of corneal biomechanics.


2019 ◽  
Vol 104 (4) ◽  
pp. 563-568 ◽  
Author(s):  
Masato Matsuura ◽  
Hiroshi Murata ◽  
Yuri Fujino ◽  
Mieko Yanagisawa ◽  
Yoshitaka Nakao ◽  
...  

AimsCorvis ST (CST) yields biomechanical corrected IOP (bIOP) which is purported to be less dependent on biomechanical properties. In our accompanied paper, it was suggested that the repeatability of bIOP is high. The purpose of the current study was to assess the relationship between intraocular pressure (IOP) measured with CST and central corneal thickness (CCT) and corneal hysteresis (CH), in comparison with IOP measured with Goldmann applanation tonometry (GAT) and the ocular response analyzer (ORA).MethodsA total of 141 eyes from 141 subjects (35 healthy eyes and 106 glaucomatous eyes) underwent IOP measurements with GAT, CST and ORA. The relationships between IOP measurements (ORA-IOPg, ORA-IOPcc, CST-bIOP and GAT IOP) and biomechanical properties (CCT, CH and corneal resistance factor (CRF)) were analysed using the linear regression analysis.ResultsIOPg, IOPcc and GAT IOP were significantly associated with CCT (p<0.001), whereas bIOP was not significantly associated with CCT (p=0.19). IOPg, bIOP and GAT IOP were significantly associated with CH (IOPg: p<0.001; bIOP: p<0.001; GAT IOP: p=0.0054), whereas IOPcc was not significantly associated with CH (p=0.18). All of IOP records were associated with CRF (p<0.001).ConclusionThe bIOP measurement from CST is independent from CCT, but dependent on CH and CRF.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Tian ◽  
Yi-Fei Huang ◽  
Li-Qiang Wang ◽  
Hua Bai ◽  
Qun Wang ◽  
...  

Purpose. To compare the corneal biomechanical properties of keratoconic patients and age-matched controls using corneal visualization Scheimpflug technology (Corvis ST).Methods. Sixty keratoconic eyes from 47 keratoconus patients and 60 normal eyes from 60 controls were enrolled in this prospective study. Tomography and biomechanical parameters of all eyes were obtained with the Pentacam and Corvis ST, respectively. Intraocular pressure was measured using a Goldmann applanation tonometer.Results.The tomography and biomechanical parameters of the keratoconic corneas were significantly different from those of the normal corneas except for the anterior chamber angle, first applanation length, the highest concavity time, and peak distance. The deformation amplitude was the best predictive parameter (area under the curve: 0.882), with a sensitivity of 81.7%, although there was a significant overlap between keratoconic and normal corneas that ranged from 1.0 to 1.4 mm. In both the keratoconus and control groups, the deformation amplitude was negatively correlated with intraocular pressure, central corneal thickness, and corneal volume at 3 and 5 mm.Conclusions. Corvis ST offers an alternative method for measuring corneal biomechanical properties. The possibility of classifying keratoconus based on deformation amplitude deserves clinical attention.


1970 ◽  
Vol 12 (3) ◽  
pp. 159-168
Author(s):  
Arulmozhi Varman ◽  
Muthuraman Chockalingam

Corneal biomechanical properties have been known to influence the outcome of ocular measurements and procedures for a wide range of ocular diseases. The assessment of corneal biomechanical properties has been a challenge and, for this reason, measurement of the geographical parameters of the cornea, namely corneal thickness and topography, has formed the mainstay of understanding the basis of various ocular pathologies. A newly marketed instrument, the Reichert ocular response analyser has been developed to improve the accuracy of intraocular pressure measurement by uniquely measuring and integrating corneal biomechanical data into its intraocular pressure estimates.


The Eye ◽  
2019 ◽  
Vol 21 (128) ◽  
pp. 15-19
Author(s):  
Irina Bubnova ◽  
Veronica Averich ◽  
Elena Belousova

Purpose: Evaluation of corneal biomechanical prop¬erties and their influence on IOP indices in patients with keratoconus. Material and methods. The study included 194 eyes with keratoconus (113 patients aged from 23 to 36 years old). Corneal refraction in central zone varied from 48.25 to 56.75 D, values of corneal thickness ranged from 279 to 558 μm. Patients were divided into 4 groups according to Amsler classification: I stage – 40 eyes; II stage – 78 eyes; III stage – 54 eyes and IV stage – 22 eyes. Standard ophthal¬mological examination was carried out including pneumo¬tonometry. IOP indices and values of biomechanical prop¬erties were evaluated by dynamic bidirectional pneumatic applanation and pneumatic impression. Results. Study of corneal biomechanical properties in patients with keratoconus showed a decrease of such biomechanical indices as corneal hysteresis (CH) on aver¬age to 8.42±1.12 mm Hg, corneal resistance factor (CRF) – to 7.45±0.96 mm Hg, coefficient of elasticity (CE) – 5.35± 0.87 mm Hg. Values of these indices strongly depended on the stage of keratoconus. In the whole sample, the aver¬age corneal compensated IOP (IOPcc) amounted to 15.08± 2.43 mm Hg, Goldman IOP (IOPg) was 11.61±2.37 mm Hg and pneumatic tonometry IOP (IOPp) was 10.13±2.94 mm Hg. IOPcc indices didn’t have any statistically significant differ¬ence in dependence on the stage of keratoconus (р>0.473), while in process of disease progression IOPg and IOPp indi¬ces showed statistically significant decrease of mean values. Conclusion. Progression of keratoconus led to a de¬crease in corneal biomechanical properties which deter¬mine reduction of such indices as IOPg and IOPp in contrast to IOPcc.


Sign in / Sign up

Export Citation Format

Share Document