A hybrid extragradient method for approximating the common solutions of a variational inequality, a system of variational inequalities, a mixed equilibrium problem and a fixed point problem

2012 ◽  
Vol 218 (9) ◽  
pp. 5439-5452 ◽  
Author(s):  
K.R. Kazmi ◽  
S.H. Rizvi
2013 ◽  
Vol 2013 ◽  
pp. 1-19
Author(s):  
Abdellah Bnouhachem ◽  
Abdelouahed Hamdi

We suggest and analyze an iterative scheme for finding the approximate element of the common set of solutions of a system of variational inequalities, a mixed equilibrium problem, and a hierarchical fixed point problem in a real Hilbert space. Strong convergence of the proposed method is proved under some conditions. The results presented in this paper extend and improve some well-known results in the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Zhao-Rong Kong ◽  
Lu-Chuan Ceng ◽  
Qamrul Hasan Ansari ◽  
Chin-Tzong Pang

We consider a triple hierarchical variational inequality problem (THVIP), that is, a variational inequality problem defined over the set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational inequalities (SHVI), that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 187
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution for a monotone variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities, and a common fixed point problem of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. Strong convergence of the proposed method to the unique solution of the problem is established under some suitable assumptions.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1502
Author(s):  
Sun Young Cho

In a real Hilbert space, we investigate the Tseng’s extragradient algorithms with hybrid adaptive step-sizes for treating a Lipschitzian pseudomonotone variational inequality problem and a strict pseudocontraction fixed-point problem, which are symmetry. By imposing some appropriate weak assumptions on parameters, we obtain a norm solution of the problems, which solves a certain hierarchical variational inequality.


2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Pongrus Phuangphoo ◽  
Poom Kumam

We study and establish the existence of a solution for a generalized mixed equilibrium problem with a bifunction defined on the dual space of a Banach space. Furthermore, we also modify Halpern-Mann iterations for finding a common solution of a generalized mixed equilibrium problem and a fixed point problem. Under suitable conditions of the purposed iterative sequences, the strong convergence theorems are established by using sunny generalized nonexpansive retraction in Banach spaces. Our results extend and improve various results existing in the current literature.


Sign in / Sign up

Export Citation Format

Share Document