scholarly journals A finite volume method with linearisation in time for the solution of advection–reaction–diffusion systems

2014 ◽  
Vol 231 ◽  
pp. 445-462
Author(s):  
Jayantha Pasdunkorale Arachchige ◽  
Graeme J. Pettet
2011 ◽  
Vol 21 (02) ◽  
pp. 307-344 ◽  
Author(s):  
BORIS ANDREIANOV ◽  
MOSTAFA BENDAHMANE ◽  
RICARDO RUIZ-BAIER

The main goal of this paper is to propose a convergent finite volume method for a reaction–diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a spacetime L1 compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.


Sign in / Sign up

Export Citation Format

Share Document