secondary electron emission
Recently Published Documents


TOTAL DOCUMENTS

1673
(FIVE YEARS 134)

H-INDEX

62
(FIVE YEARS 4)

Author(s):  
June Young Kim ◽  
Igor D Kaganovich ◽  
Lee Hyo-Chang

Abstract Ionization gas sensors are a ubiquitous tool that can monitor desired gases or detect abnormalities in real time to protect the environment of living organisms or to maintain clean and/or safe environment in industries. The sensors’ working principle is based on the fingerprinting of the breakdown voltage of one or more target gases using nanostructured materials. Fundamentally, nanomaterial-based ionization-gas sensors operate within a large framework of gas breakdown physics; signifying that an overall understanding of the gas breakdown mechanism is a crucial factor in the technological development of ionization gas sensors. Moreover, many studies have revealed that physical properties of nanomaterials play decisive roles in the gas breakdown physics and the performance of plasma-based gas sensors. Based on this insight, this review provides a comprehensive description of the foundation of both the gas breakdown physics and the nanomaterial-based ionization-gas-sensor technology, as well as introduces research trends on nanomaterial-based ionization gas sensors. The gas breakdown is reviewed, including the classical Townsend discharge theory and modified Paschen curves; and nanomaterial-based-electrodes proposed to improve the performance of ionization gas sensors are introduced. The secondary electron emission at the electrode surface is the key plasma–surface process that affects the performance of ionization gas sensors. Finally, we present our perspectives on possible future directions.


Author(s):  
Rupali Paul ◽  
Gunjan Sharma ◽  
Kishor Deka ◽  
Sayan Adhikari ◽  
Rakesh Moulick ◽  
...  

Abstract The role of hot electrons in the charging of dust grains is investigated in a two-temperature hydrogen plasma. A variety of dust particles are introduced into the system and secondary electron emission (SEE) from each of the dust grains has been reported. A cylindrical Langmuir probe is used for determining the plasma parameters and a Faraday cup is connected to an electrometer in order to measure the dust current. The electrometer readings confirm the electron emission from the dust and SEE is observed from the tungsten dust in a low-pressure experimental plasma device for the first time.


Author(s):  
Haibao Mu ◽  
Yitong Yao ◽  
Shu Zhang ◽  
Guangyu Sun ◽  
Bao-Hong Guo ◽  
...  

Abstract Micro and nanoscale 3D printing technic is applied to fabricate functional insulating material which mitigates surface discharge in vacuum based on the microscopic electron multipactor suppression. The proposed alumina ceramic insulator design consists surface-embedded thin metal wires which introduce a local gradient of secondary electron emission yield, such that the trajectories of multipactor electrons are distorted by accumulated negative surface charges and the secondary electron emission avalanche across the insulator surface is intermitted. Considerable increases of surface flashover threshold and surface charging reduction are verified by experiment. Also, additional efforts are made to determine the optimal size and spatial distribution of the metal wire. A convex-shape flashover voltage trace is observed when increasing the wire width, suggesting a trade-off between the multipactor mitigation and the insulator strength. Wire position between the adjacency of cathode triple junction and middle of the insulator is proved to be favorable for flashover mitigation. The physical details of surface flashover mitigation by the proposed insulator design are revealed by an ab initio particle-in-cell (PIC) simulation code, corroborating the experiment from microscopic aspect.


2021 ◽  
pp. 38-41
Author(s):  
S.H. Karpus ◽  
G.D. Kovalenko ◽  
Yu.H. Kazarinov ◽  
V.M. Dubina ◽  
V.Y. Kasilov ◽  
...  

The description of the experimental equipment and technique for measuring the secondary emission of elec-trons (SEE) with application of accelerated electrons at the linear accelerator of the IHEPNP NSC KIPT with ener-gies up to 30 MeV and a standard secondary emission monitor [1] are presented. Experimental data of secondary electron emission yields from thin aluminum targets (8 and 50 μm) for primary electron beam energies of 16 and 25 MeV have been experimentally measured. The analysis of the experimental data and their comparison with the theory are carried out. It is shown that the proposed technique for measuring the yields of secondary electron emis-sion is useful and applied for study of low-energy and δ-electrons yields from thin foils, as well as to research the effect of the density effect depending on the energy of the primary electron beam.


Author(s):  
Jon Tomas Gudmundsson ◽  
Janez Krek ◽  
De-Qi Wen ◽  
Emi Kawamura ◽  
Michael A Lieberman

Abstract One-dimensional particle-in-cell/Monte Carlo collisional (PIC/MCC) simulations are performed on a capacitive 2.54 cm gap, 1.6 Torr argon discharge driven by a sinusoidal rf current density amplitude of 50 A/m2 at 13.56 MHz. The excited argon states (metastable levels, resonance levels, and the 4p manifold) are modeled self-consistently with the particle dynamics as space- and time-varying fluids. Four cases are examined, including and neglecting excited states, and using either a fixed or energy-dependent secondary electron emission yield due to ion and/or neutral impact on the electrodes. The results for all cases show that most of the ionization occurs near the plasma-sheath interfaces, with little ionization within the plasma bulk region. Without excited states, secondary electrons emitted from the electrodes are found to play a strong role in the ionization process. When the excited states, secondary electron emission due to neutral and ion impact on the electrodes are included in the discharge model, the discharge operation transitions from α-mode to γ-mode, in which nearly all the ionization is due to secondary electrons. Excited states are very effective in producing secondary electrons, with approximately 14.7 times the contribution of ion bombardment. Electron impact of ground state argon atoms by secondary electrons contributes about 76 % of the total ionization; primary electrons, about 11 %; metastable Penning ionization, about 13 %; and multi-step ionization, about 0.3 %.


2021 ◽  
Author(s):  
Yu Chen ◽  
Qingyun Shi ◽  
Guorui Huang ◽  
Liang Feng ◽  
Shuang Wang ◽  
...  

2021 ◽  
Vol 130 (13) ◽  
pp. 135305
Author(s):  
C. Rigoudy ◽  
K. Makasheva ◽  
M. Belhaj ◽  
S. Dadouch ◽  
G. Teyssedre ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuman Wang ◽  
Baojun Yan ◽  
Kaile Wen ◽  
Shulin Liu ◽  
Ming Qi ◽  
...  

AbstractThe electron multipliers gain is closely related to the secondary electron emission coefficient (SEE) of the emission layer materials. The SEE is closely related to the thickness of the emission layer. If the emission layer is thin, the low SEE causes the low gain of electron multipliers. If the emission layer is thick, the conductive layer can't timely supplement charge to the emission layer, the electronic amplifier gain is low too. The electron multipliers usually choose Al2O3 and MgO film as the emission layer because of the high SEE level. MgO easy deliquescence into Mg(OH)2 Mg2(OH)2CO3 and MgCO3 resulting in the lower SEE level. The SEE level of Al2O3 is lower than MgO, but Al2O3 is stable. We designed a spherical system for testing the SEE level of materials, and proposed to use low-energy secondary electrons instead of low-energy electron beam for neutralization to measuring the SEE level of Al2O3, MgO, MgO/Al2O3, Al2O3/MgO, and precisely control the film thickness by using atomic layer deposition. We propose to compare the SEE under the adjacent incident electrons energy to partition the SEE value of the material, and obtain four empirical formulas for the relationship between SEE and thickness. Since the main materials that cause the decrease in SEE are Mg2(OH)2CO3 and MgCO3, we use the C element atomic concentration measured by XPS to study the deliquescent depth of the material. We propose to use the concept of transition layer for SEE interpretation of multilayer materials. Through experiments and calculations, we put forward a new emission layer for electron multipliers, including 2–3 nm Al2O3 buffer layer, 5–9 nm MgO main-body layer, 1 nm Al2O3 protective layer or 0.3 nm Al2O3 enhancement layer. We prepared this emission layer to microchannel plate (MCP), which significantly improved the gain of MCP. We can also apply this new emission layer to channel electron multiplier and separate electron multiplier.


Sign in / Sign up

Export Citation Format

Share Document