scholarly journals Exponential stability for stochastic differential equation driven by G-Brownian motion

2012 ◽  
Vol 25 (11) ◽  
pp. 1906-1910 ◽  
Author(s):  
Defei Zhang ◽  
Zengjing Chen
2020 ◽  
Vol 28 (3) ◽  
pp. 183-196
Author(s):  
Kouacou Tanoh ◽  
Modeste N’zi ◽  
Armel Fabrice Yodé

AbstractWe are interested in bounds on the large deviations probability and Berry–Esseen type inequalities for maximum likelihood estimator and Bayes estimator of the parameter appearing linearly in the drift of nonhomogeneous stochastic differential equation driven by fractional Brownian motion.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wenli Zhu ◽  
Jiexiang Huang ◽  
Xinfeng Ruan ◽  
Zhao Zhao

This paper focuses on a class of stochastic differential equations with mixed delay based on Lyapunov stability theory, Itô formula, stochastic analysis, and inequality technique. A sufficient condition for existence and uniqueness of the adapted solution to such systems is established by employing fixed point theorem. Some sufficient conditions of exponential stability and corollaries for such systems are obtained by using Lyapunov function. By utilizing Doob’s martingale inequality and Borel-Cantelli lemma, it is shown that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. In particular, our theoretical results show that if stochastic differential equation is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic differential equation with mixed delay will remain exponentially stable. Moreover, time delay upper limit is solved by using our theoretical results when the system is exponentially stable, and they are more easily verified and applied in practice.


1987 ◽  
Vol 24 (02) ◽  
pp. 370-377 ◽  
Author(s):  
E. J. Pauwels

The purpose of this paper is to show that smoothness conditions on the diffusion and drift coefficient of a one-dimensional stochastic differential equation imply the existence and smoothness of a first-passage density. In order to be able to prove this, we shall show that Brownian motion conditioned to first hit a point at a specified time has the same distribution as a Bessel (3)-process with changed time scale.


1996 ◽  
Vol 28 (02) ◽  
pp. 334-335
Author(s):  
Wilfrid S. Kendall

This reports on work in progress, developing a dynamical context for Bookstein's shape theory. It shows how Bookstein's shape space for triangles arises when the landmarks are moved around by a particular Brownian motion on the general linear group of (2 × 2) invertible matrices. Indeed, suppose that the random process G(t) ∈ GL(2, ℝ) solves the Stratonovich stochastic differential equation dsG = (dsB)G for a Brownian matrix B (independent Brownian motion entries). If {x1 x2, x3 } is a fixed (non-degenerate) triple of planar points then Xi(t) = G(t)xi ; determines a triple {X1 X2, X3 } whose shape performs a diffusion which can be shown to be Brownian motion on the hyperbolic plane of negative curvature − 2.


2015 ◽  
Vol 47 (2) ◽  
pp. 476-505
Author(s):  
Amarjit Budhiraja ◽  
Vladas Pipiras ◽  
Xiaoming Song

The infinite source Poisson arrival model with heavy-tailed workload distributions has attracted much attention, especially in the modeling of data packet traffic in communication networks. In particular, it is well known that under suitable assumptions on the source arrival rate, the centered and scaled cumulative workload input process for the underlying processing system can be approximated by fractional Brownian motion. In many applications one is interested in the stabilization of the work inflow to the system by modifying the net input rate, using an appropriate admission control policy. In this paper we study a natural family of admission control policies which keep the associated scaled cumulative workload input asymptotically close to a prespecified linear trajectory, uniformly over time. Under such admission control policies and with natural assumptions on arrival distributions, suitably scaled and centered cumulative workload input processes are shown to converge weakly in the path space to the solution of a d-dimensional stochastic differential equation driven by a Gaussian process. It is shown that the admission control policy achieves moment stabilization in that the second moment of the solution to the stochastic differential equation (averaged over the d-stations) is bounded uniformly for all times. In one special case of control policies, as time approaches ∞, we obtain a fractional version of a stationary Ornstein-Uhlenbeck process that is driven by fractional Brownian motion with Hurst parameter H > ½.


2018 ◽  
Vol 21 (5) ◽  
pp. 1420-1435 ◽  
Author(s):  
Mirko D’Ovidio ◽  
Silvia Vitali ◽  
Vittoria Sposini ◽  
Oleksii Sliusarenko ◽  
Paolo Paradisi ◽  
...  

Abstract We consider an ensemble of Ornstein–Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding to this ensemble is statistically equivalent to a process driven by a non-autonomous stochastic differential equation with time-dependent drift and a white noise. In particular, the time scaling and the density function of such variable are driven by the population of timescales and of noise amplitudes, respectively. Moreover, we show that this variable is equivalent in distribution to a randomly-scaled Gaussian process, i.e., a process built by the product of a Gaussian process times a non-negative independent random variable. This last result establishes a connection with the so-called generalized grey Brownian motion and suggests application to model fractional anomalous diffusion in biological systems.


Sign in / Sign up

Export Citation Format

Share Document