New benchmark solutions for free vibration of clamped rectangular thick plates and their variants

2018 ◽  
Vol 78 ◽  
pp. 88-94 ◽  
Author(s):  
Rui Li ◽  
Pengcheng Wang ◽  
Xinran Zheng ◽  
Bo Wang
Author(s):  
Mrutyunjay Rout ◽  
Sasank Shekhara Hota ◽  
Amit Karmakar

Effects of delamination on free vibration characteristics of laminated stiffened cylindrical shells with pretwist are analyzed by finite element method. The investigation is carried out using an eight-noded quadratic isoparametric shell element, which incorporates the transverse shear deformation and rotary inertia along with a three-noded beam element for the stiffener. The multipoint constraint algorithm has been included to guarantee the compatibility of deformation, equilibrium of resultant forces, and moments at delamination crack tip. The general dynamic equilibrium equation is derived from Lagrange’s equation of motion for moderate rotational speeds for which the Coriolis effect is neglected. The standard eigenvalue problem is solved utilizing QR iteration algorithm. The accuracy of the present formulation is validated with benchmark solutions is available in the literature. The present work concerns about the effects of delamination, fiber orientation, twist angle, stiffener depth-to-shell thickness ratio, and rotational speed on the fundamental frequency of shallow cylindrical shells with stiffener. Representative mode shapes for some typical case of the stiffened shell for different twist angles and rotational speeds are also presented.


2009 ◽  
Vol 323 (1-2) ◽  
pp. 366-384 ◽  
Author(s):  
S.H. Hashemi ◽  
S. Farhadi ◽  
S. Carra

2018 ◽  
Vol 4 (2) ◽  
pp. 61
Author(s):  
Yaprak Itır Özdemir

The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin’s theory with first order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency parameters of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using first order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 4-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 4-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.


2021 ◽  
Author(s):  
Supun Jayasinghe ◽  
Seyed M. Hashemi

The free flexural vibration of thin rectangular plates is revisited. A new, quasi-exact solution to the governing differential equation is formed by following a unique method of decomposing the governing equation into two beam-like expressions. Using the proposed quasi-exact solution, a Dynamic Coefficient Matrix (DCM) method is formed and used to investigate the free lateral vibration of a rectangular thin plate, subjected to various boundary conditions. Exploiting a special code written on MATLAB, the flexural natural frequencies of the plate are found by sweeping the frequency domain in search of specific frequencies that yield a zero determinant. Results are validated extensively both by the limited exact results available in the open literature and by numerical studies using ANSYS and in-house conventional FEM programs using both 12- and 16-DOF plate elements. The accuracy of all methods for lateral free vibration analysis is assessed and critically examined through benchmark solutions. It is envisioned that the proposed quasi-exact solution and the DCM method will allow engineers to more conveniently investigate the vibration behaviour of two-dimensional structural components during the preliminary design stages, before a detailed design begins.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050025
Author(s):  
Xi Yang ◽  
Adil El Baroudi ◽  
Jean Yves Le Pommellec

Free vibration of coupled system including clamped-free thin circular plate with hole submerged in three-dimensional cylindrical container filled with inviscid, irrotational and compressible fluid is investigated in this work. Numerical approach based on the finite element method (FEM) is performed using the Comsol Multiphysics software, in order to analyze qualitatively the vibration characteristics of the plate. Plate modeling is based on Kirchhoff–Love plate theory. Velocity potential is deployed to describe the fluid motion since the small oscillations induced by the plate vibration is considered. Bernoulli’s equation together with potential theory is applied to get the fluid pressure on the free surface of the plate. To prove the reliability of the present numerical solution, a comparison is made with the results in the literature, which shows a very good agreement. Then, different parameters effect including fluid density, fluid height, free surface wave, hole radius and hole eccentricity on the natural frequencies of the coupled system is discussed in detail. Some three-dimensional mode shapes of the submerged plate are illustrated. Furthermore, the obtained results can serve as benchmark solutions for the vibration control, parameter identification and damage detection of plate.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Supun Jayasinghe ◽  
Seyed M. Hashemi

The free flexural vibration of thin rectangular plates is revisited. A new, quasi-exact solution to the governing differential equation is formed by following a unique method of decomposing the governing equation into two beam-like expressions. Using the proposed quasi-exact solution, a Dynamic Coefficient Matrix (DCM) method is formed and used to investigate the free lateral vibration of a rectangular thin plate, subjected to various boundary conditions. Exploiting a special code written on MATLAB®, the flexural natural frequencies of the plate are found by sweeping the frequency domain in search of specific frequencies that yield a zero determinant. Results are validated extensively both by the limited exact results available in the open literature and by numerical studies using ANSYS® and in-house conventional FEM programs using both 12- and 16-DOF plate elements. The accuracy of all methods for lateral free vibration analysis is assessed and critically examined through benchmark solutions. It is envisioned that the proposed quasi-exact solution and the DCM method will allow engineers to more conveniently investigate the vibration behaviour of two-dimensional structural components during the preliminary design stages, before a detailed design begins.


Sign in / Sign up

Export Citation Format

Share Document