twist angle
Recently Published Documents


TOTAL DOCUMENTS

589
(FIVE YEARS 248)

H-INDEX

33
(FIVE YEARS 12)

Author(s):  
Jesús Arturo Sánchez-Sánchez ◽  
Montserrat Navarro-Espino ◽  
Yonatan Betancur Ocampo ◽  
José Eduardo Barrios Vargas ◽  
Thomas Stegmann

Abstract A nanoelectronic device made of twisted bilayer graphene (TBLG) is proposed to steer the direction of the current flow. The ballistic electron current, injected at one edge of the bottom layer, can be guided predominantly to one of the lateral edges of the top layer. The current is steered to the opposite lateral edge, if either the twist angle is reversed or the electrons are injected in the valence band instead of the conduction band, making it possible to control the current flow by electric gates. When both graphene layers are aligned, the current passes straight through the system without changing its initial direction. The observed steering angle exceeds well the twist angle and emerges for a broad range of experimentally accessible parameters. It is explained by the twist angle and the trigonal shape of the energy bands beyond the van Hove singularity due to the Moiré interference pattern. As the shape of the energy bands depends on the valley degree of freedom, the steered current is valley polarized. Our findings show how to control and manipulate the current flow in TBLG. Technologically, they are of relevance for applications in twistronics and valleytronics.


Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Mihai Bugaru ◽  
Andrei Vasile

The aim of this research was to design a physically consistent model for the forced torsional vibrations of automotive driveshafts that considered aspects of the following phenomena: excitation due to the transmission of the combustion engine through the gearbox, excitation due to the road geometry, the quasi-isometry of the automotive driveshaft, the effect of nonuniformity of the inertial moment with respect to the longitudinal axis of the tulip–tripod joint and of the bowl–balls–inner race joint, the torsional rigidity, and the torsional damping of each joint. To resolve the equations of motion describing the forced torsional nonlinear parametric vibrations of automotive driveshafts, a variational approach that involves Hamilton’s principle was used, which considers the isometric nonuniformity, where it is known that the joints of automotive driveshafts are quasi-isometric in terms of the twist angle, even if, in general, they are considered CVJs (constant velocity joints). This effect realizes the link between the terms for the torsional vibrations between the elements of the driveshaft: tripode–tulip, midshaft, and bowl–balls–inner race joint elements. The induced torsional loads (as gearbox torsional moments that enter the driveshaft through the tulip axis) can be of harmonic type, while the reactive torsional loads (as reactive torsional moments that enter the driveshaft through the bowl axis) are impulsive. These effects induce the resulting nonlinear dynamic behavior. Also considered was the effect of nonuniformity on the axial moment of inertia of the tripod–tulip element as well as on the axial moment of inertia of the bowl–balls–inner race joint element, that vary with the twist angle of each element. This effect induces parametric dynamic behavior. Moreover, the torsional rigidity was taken into consideration, as was the torsional damping for each joint of the driveshaft: tripod–joint and bowl–balls–inner race joint. This approach was used to obtain a system of equations of nonlinear partial derivatives that describes the torsional vibrations of the driveshaft as nonlinear parametric dynamic behavior. This model was used to compute variation in the natural frequencies of torsion in the global tulip (a given imposed geometry) using the angle between the tulip–midshaft for an automotive driveshaft designed for heavy-duty SUVs as well as the characteristic amplitude frequency in the region of principal parametric resonance together the method of harmonic balance for the steady-state forced torsional nonlinear vibration of the driveshaft. This model of dynamic behavior for the driveshaft can be used during the early stages of design as well in predicting the durability of automotive driveshafts. In addition, it is important that this model be added in the design algorithm for predicting the comfort elements of the automotive environment to adequately account for this kind of dynamic behavior that induces excitations in the car structure.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Rodríguez-Álvarez ◽  
Antonio García-Martín ◽  
Arantxa Fraile Rodríguez ◽  
Xavier Batlle ◽  
Amílcar Labarta

AbstractWe present a system consisting of two stacked chiral plasmonic nanoelements, so-called triskelia, that exhibits a high degree of circular dichroism. The optical modes arising from the interactions between the two elements are the main responsible for the dichroic signal. Their excitation in the absorption cross section is favored when the circular polarization of the light is opposite to the helicity of the system, so that an intense near-field distribution with 3D character is excited between the two triskelia, which in turn causes the dichroic response. Therefore, the stacking, in itself, provides a simple way to tune both the value of the circular dichroism, up to 60%, and its spectral distribution in the visible and near infrared range. We show how these interaction-driven modes can be controlled by finely tuning the distance and the relative twist angle between the triskelia, yielding maximum values of the dichroism at 20° and 100° for left- and right-handed circularly polarized light, respectively. Despite the three-fold symmetry of the elements, these two situations are not completely equivalent since the interplay between the handedness of the stack and the chirality of each single element breaks the symmetry between clockwise and anticlockwise rotation angles around 0°. This reveals the occurrence of clear helicity-dependent resonances. The proposed structure can be thus finely tuned to tailor the dichroic signal for applications at will, such as highly efficient helicity-sensitive surface spectroscopies or single-photon polarization detectors, among others.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng Hu ◽  
Tongyao Wu ◽  
Xinyue Huang ◽  
Yulong Dong ◽  
Jiajun Chen ◽  
...  

AbstractThe electrical and optical properties of twisted bilayer graphene (tBLG) depend sensitively on the twist angle. To study the angle dependent properties of the tBLG, currently it is required fabrication of a large number of samples with systematically varied twist angles. Here, we demonstrate the construction of in-situ twistable bilayer graphene, in which the twist angle of the two graphene monolayers can be in-situ tuned continuously in a large range with high precision. The controlled tuning of the twist angle is confirmed by a combination of real-space and spectroscopic characterizations, including atomic force microscopy (AFM) identification of crystal lattice orientation, scanning near-field optical microscopy (SNOM) imaging of superlattice domain walls, and resonant Raman spectroscopy of the largely enhanced G-mode. The developed in-situ twistable homostructure devices enable systematic investigation of the twist angle effects in a single device, thus could largely advance the research of twistronics.


2022 ◽  
Vol 43 (1) ◽  
pp. 011001
Author(s):  
Kaiyao Xin ◽  
Xingang Wang ◽  
Kasper Grove-Rasmussen ◽  
Zhongming Wei

Abstract Twist-angle two-dimensional systems, such as twisted bilayer graphene, twisted bilayer transition metal dichalcogenides, twisted bilayer phosphorene and their multilayer van der Waals heterostructures, exhibit novel and tunable properties due to the formation of Moiré superlattice and modulated Moiré bands. The review presents a brief venation on the development of “twistronics” and subsequent applications based on band engineering by twisting. Theoretical predictions followed by experimental realization of magic-angle bilayer graphene ignited the flame of investigation on the new freedom degree, twist-angle, to adjust (opto)electrical behaviors. Then, the merging of Dirac cones and the presence of flat bands gave rise to enhanced light-matter interaction and gate-dependent electrical phases, respectively, leading to applications in photodetectors and superconductor electronic devices. At the same time, the increasing amount of theoretical simulation on extended twisted 2D materials like TMDs and BPs called for further experimental verification. Finally, recently discovered properties in twisted bilayer h-BN evidenced h-BN could be an ideal candidate for dielectric and ferroelectric devices. Hence, both the predictions and confirmed properties imply twist-angle two-dimensional superlattice is a group of promising candidates for next-generation (opto)electronics.


Author(s):  
Osama A. Gaheen ◽  
Mohamed A. Aziz ◽  
M. Hamza ◽  
Hoda Kashkoush ◽  
Mohamed A. Khalifa

One of the succeeded methods to enhance the performance of horizontal axis wind turbine (HAWT) is an attaching a winglet to the blades tip. The current paper study the effect of four key parameters that are used to describe the winglet on the performance of wind turbine which are winglet height H%R, cant angle θ, twist angle β, and taper ratio Λ. A five design cases for each geometric parameters were numerically investigated using computational fluid dynamics (CFD) by ANSYS18.1 software, which totally give a twenty different response. A validation of present computational model with reference experimental results successfully carried out with maximum inconsistency of 3%. A mathematical correlation was established from the CFD results and being used in predicting the turbine power for the different winglet geometric parameters. From CFD and mathematical correlation response, the effect of H and θ were greater than β and Λ on the turbine power. The epoxy E-glass unidirectional material was selected for current study to investigate the effect of winglet on blade structure. The power increases by 2% to 30% due to adding winglet to a wind turbine blade. The maximum power increment corresponds to the design case of W6 with H= 8%R, =30°, β = 3°, and Λ = 0.8. Form the structural analysis the addition of winglet changes the stress distribution over the blade, increasing stresses at the blade root, and achieved the transfer of the maximum deformation from the blade tip to the winglet tip.


Author(s):  
Wenjie Ma ◽  
Yao Shan ◽  
Binglong Wang ◽  
Shunhua Zhou

The torsional dynamic response of a pile embedded in transversely isotropic saturated soil is investigated while allowing for the construction of disturbance effect. The dynamic governing equations of soil are established based on Biot’s poroelastic theory. By virtue of the continuous conditions of stress and displacement of adjacent disturbance circle and the boundary conditions of pile-soil coupling system, the circumferential displacement of soil and the shear stress on pile-soil contact surface are derived. Subsequently, a closed-form solution for the torsional dynamic response of a pile is derived in the frequency domain. By using inverse Fourier transform and the convolution theorem, a quasi-analytical solution for the velocity response of the pile head subjected to a semi-sine excitation torque is derived in the time domain. The proposed analytical solution is verified by comparing with the two existing solutions available in literature. Following the present solution, a parameter study is undertaken to portray the influence on the complex impedance, twist angle and torque of pile.


2021 ◽  
Vol 14 (2) ◽  
pp. 64-69
Author(s):  
Irvan Indra Cahyadi ◽  
Ratna Dewi Anjani

Utilization of wind energy is one option to produce electrical energy in the form of wind turbines. Wind energy is also renewable energy that can be utilized because of the potential for wind energy in Indonesia with an average wind speed of 2- 6 m/s. The purpose of this performance analysis is to obtain high efficiency so that the S2091 taperless blade can rotate at relatively low Indonesian wind speeds. Airfoil S2091 has an optimal Cl/Cd value to produce 500 W of power. This performance analysis uses the Blade Element Momentum (BEM) method in which the blade is divided into several elements, starting from determining the radius, chord, and twist on the blade. The assumed parameters will be simulated using Qblade v0.96 software and designing 3D blade designs using SolidWorks software. The dimensions of the taperless blade with the S2091 airfoil have a radius of 0.8 m, a chord of 0.12 m, a twist angle of 6.96o - 9.96o, and a maximum Cp value of 47% at a TSR of 4.5. At a speed of 12 m/s the maximum power generated is 998 W when the angular speed of the blade is 645 rpm and the minimum power generated is 95 W. Then the average power generated is 640.94 W. The results of field tests have a maximum charging power of 138 .46 W and an average charging of 14.13 W. Then the power obtained is 257.80 Wh. From these data, the efficiency of the blade system is 30%–40% and the efficiency of field testing is 34.16%.


Author(s):  
Kyongok Kang

Abstract Bacteriophage DNA fd-rods are long and stiff rod-like particles which are known to exhibit a rich equilibrium phase behavior. Due to their helical molecular structure, they form the stable chiral nematic (N*) mesophases. Very little is known about the kinetics of forming various phases with orientations. The present study addresses the kinetics of chiral-mesophases and N*-phase, by using a novel image-time correlation technique. Instead of correlating time-lapsed real-space microscopy images, the corresponding Fourier images are shown for time-correlated averaged orientations. This allows to unambiguously distinguish to detect the temporal evolution of orientations on different length scales, such as domain sizes (depending on their relative orientations), and the chiral pitch within the domains. Kinetic features are qualitatively interpreted in terms of replica symmetry breaking of elastic deformations in the orthogonal directional axes of chiral-mesophase domains, as well by the average twist angle and the order parameter. This work can be interesting for characterizing other types of charged rods, mimicking super-cooled liquids and orientation glasses.


Sign in / Sign up

Export Citation Format

Share Document