scholarly journals Phase 1 clinical trials of DAS181, an inhaled sialidase, in healthy adults

2015 ◽  
Vol 123 ◽  
pp. 114-119 ◽  
Author(s):  
Jonathan M. Zenilman ◽  
Edward J. Fuchs ◽  
Craig W. Hendrix ◽  
Christine Radebaugh ◽  
Robert Jurao ◽  
...  
2001 ◽  
Vol 69 (11) ◽  
pp. 6696-6701 ◽  
Author(s):  
L. C. Paoletti ◽  
M. A. Rench ◽  
D. L. Kasper ◽  
D. Molrine ◽  
D. Ambrosino ◽  
...  

ABSTRACT Phase 1 and 2 clinical trials of group B streptococcal (GBS) capsular polysaccharide (CPS)-protein conjugate vaccines in healthy adults have demonstrated their safety and improved immunogenicity compared with uncoupled CPSs. Two recent trials sought to determine (i) whether adsorption of conjugate vaccine to aluminum hydroxide would improve immunogenicity and (ii) whether the CPS-specific immunoglobulin G (IgG) response could be boosted by administration of a second dose. Adsorption of GBS type III CPS-tetanus toxoid (III-TT) conjugate vaccine to alum did not improve the immune response to a 12.5-μg dose in healthy adult recipients. Four weeks after vaccination, the geometric mean antibody concentrations (GMCs) for the 15 recipients of III-TT with or without alum were 3.3 and 3.6 μg/ml, respectively. In the second trial, 36 healthy adults vaccinated previously with GBS III-TT conjugate were given a second 12.5-μg dose 21 months later. At 4 weeks after the second dose, the GMCs of type III CPS-specific IgG were similar to those measured 4 weeks after the primary vaccination, suggesting a lack of a booster response. However, 8 (22%) of the 36 participants who had undetectable III CPS-specific IgG (<0.05 μg/ml) before the first dose of III-TT conjugate exhibited a booster response to the second dose, with a fourfold-greater GMC of type III CPS-specific IgG than after the initial immunization. These results suggest that prior natural exposure to type III GBS or a related antigen may be responsible for the brisk IgG response to CPS noted in most adults after vaccination. However, a second dose of GBS III-TT conjugate vaccine may be required for adults whose initial CPS-specific IgG concentrations are very low and would also restore the initial peak-specific III CPS-IgG in responders to previous vaccination.


Vaccine ◽  
2019 ◽  
Vol 37 (25) ◽  
pp. 3326-3334 ◽  
Author(s):  
Robert A. Feldman ◽  
Rainard Fuhr ◽  
Igor Smolenov ◽  
Amilcar (Mick) Ribeiro ◽  
Lori Panther ◽  
...  

The Lancet ◽  
2018 ◽  
Vol 391 (10120) ◽  
pp. 552-562 ◽  
Author(s):  
Martin R Gaudinski ◽  
Katherine V Houser ◽  
Kaitlyn M Morabito ◽  
Zonghui Hu ◽  
Galina Yamshchikov ◽  
...  

2019 ◽  
Author(s):  
Nina Wressnigg ◽  
Romana Hochreiter ◽  
Oliver Zoihsl ◽  
Andrea Fritzer ◽  
Nicole Bézay ◽  
...  

2010 ◽  
Vol 9 (4) ◽  
pp. 214-219
Author(s):  
Robyn J. Barst

Drug development is the entire process of introducing a new drug to the market. It involves drug discovery, screening, preclinical testing, an Investigational New Drug (IND) application in the US or a Clinical Trial Application (CTA) in the EU, phase 1–3 clinical trials, a New Drug Application (NDA), Food and Drug Administration (FDA) review and approval, and postapproval studies required for continuing safety evaluation. Preclinical testing assesses safety and biologic activity, phase 1 determines safety and dosage, phase 2 evaluates efficacy and side effects, and phase 3 confirms efficacy and monitors adverse effects in a larger number of patients. Postapproval studies provide additional postmarketing data. On average, it takes 15 years from preclinical studies to regulatory approval by the FDA: about 3.5–6.5 years for preclinical, 1–1.5 years for phase 1, 2 years for phase 2, 3–3.5 years for phase 3, and 1.5–2.5 years for filing the NDA and completing the FDA review process. Of approximately 5000 compounds evaluated in preclinical studies, about 5 compounds enter clinical trials, and 1 compound is approved (Tufts Center for the Study of Drug Development, 2011). Most drug development programs include approximately 35–40 phase 1 studies, 15 phase 2 studies, and 3–5 pivotal trials with more than 5000 patients enrolled. Thus, to produce safe and effective drugs in a regulated environment is a highly complex process. Against this backdrop, what is the best way to develop drugs for pulmonary arterial hypertension (PAH), an orphan disease often rapidly fatal within several years of diagnosis and in which spontaneous regression does not occur?


Author(s):  
Alexia Iasonos ◽  
John O’Quigley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document