Off-design performance and power-control strategy for combined cycle coupled with high-temperature gas-cooled reactor

2019 ◽  
Vol 130 ◽  
pp. 338-346 ◽  
Author(s):  
Xinhe Qu ◽  
Xiaoyong Yang ◽  
Jie Wang
Author(s):  
Eisaku Ito ◽  
Ikuo Okada ◽  
Keizo Tsukagoshi ◽  
Junichiro Masada

Global warming is being “prevented” by reducing power plant CO2 emissions. We are contributing to the overall solution by improving the gas turbine thermal efficiency for gas turbine combined cycle (GTCC). Mitsubishi Heavy Industries, Ltd. (MHI) is a participant in a national project aimed at developing 1700°C gas turbine technology. As part of this national project, selected component technologies are investigated in detail. Some technologies which have been verified through component tests have been applied to the design of the newly developed 1600°C J-type gas turbine.


Author(s):  
Colin F. McDonald

With the capability of burning a variety of fossil fuels, giving high thermal efficiency, and operating with low emissions, the gas turbine is becoming a major prime-mover for a wide spectrum of applications. Almost three decades ago two experimental projects were undertaken in which gas turbines were actually operated with heat from nuclear reactors. In retrospect, these systems were ahead of their time in terms of technology readiness, and prospects of the practical coupling of a gas turbine with a nuclear heat source towards the realization of a high efficiency, pollutant free, dry-cooled power plant has remained a long-term goal, which has been periodically studied in the last twenty years. Technology advancements in both high temperature gas-cooled reactors, and gas turbines now make the concept of a nuclear gas turbine plant realizable. Two possible plant concepts are highlighted in this paper, (1) a direct cycle system involving the integration of a closed-cycle helium gas turbine with a modular high temperature gas cooled reactor (MHTGR), and (2) the utilization of a conventional and proven combined cycle gas turbine, again with the MHTGR, but now involving the use of secondary (helium) and tertiary (air) loops. The open cycle system is more equipment intensive and places demanding requirements on the very high temperature heat exchangers, but has the merit of being able to utilize a conventional combined cycle turbo-generator set. In this paper both power plant concepts are put into perspective in terms of categorizing the most suitable applications, highlighting their major features and characteristics, and identifying the technology requirements. The author would like to dedicate this paper to the late Professor Karl Bammert who actively supported deployment of the closed-cycle gas turbine for several decades with a variety of heat sources including fossil, solar, and nuclear systems.


Author(s):  
K. Kano ◽  
H. Matsuzaki ◽  
K. Aoyama ◽  
S. Aoki ◽  
S. Mandai

This paper outlines the development programs of the next generation, 1500°C Class, high efficiency gas turbine. Combined cycle thermal efficiency of more than 55% (LHV) is expected to be obtained with metallic turbine components. To accomplish this, advancements must be made in the key technologies of NOx control, materials and cooling.


2018 ◽  
Vol 108 ◽  
pp. 1-10 ◽  
Author(s):  
Qu Xinhe ◽  
Yang Xiaoyong ◽  
Wang Jie ◽  
Zhao Gang

Sign in / Sign up

Export Citation Format

Share Document