Investigation of fluid-structure Interaction of fuel element in high speed and high temperature air cooled reactor

2021 ◽  
Vol 160 ◽  
pp. 108400
Author(s):  
Ruibo Lu ◽  
Zhifang Qiu ◽  
Yuhao He ◽  
Wen Yang ◽  
Zhongchun Li ◽  
...  
Author(s):  
Riccardo Traversari ◽  
Alessandro Rossi ◽  
Marco Faretra

Pressure losses at the cylinder valves of reciprocating compressors are generally calculated by the classical equation of the flow through an orifice, with flow coefficient determined in steady conditions. Rotational speed has increased in the last decade to reduce compressor physical dimensions, weight and cost. Cylinder valves and associated gas passages became then more and more critical, as they determine specific consumption and throughput. An advanced approach, based on the new Fluid Structure Interaction (FSI) software, which allows to deal simultaneously with thermodynamic, motion and deformation phenomena, was utilized to simulate the complex situation that occurs in a reciprocating compressor cylinder during the motion of the piston. In particular, the pressure loss through valves, ducts and manifolds was investigated. A 3D CFD Model, simulating a cylinder with suction and discharge valves, was developed and experimentally validated. The analysis was performed in transient and turbulent condition, with compressible fluid, utilizing a deformable mesh. The 3D domain simulating the compression chamber was considered variable with the law of motion of the piston and the valve rings mobile according to the fluid dynamic forces acting on them. This procedure is particularly useful for an accurate valve loss evaluation in case of high speed compressors and heavy gases. Also very high pressure cylinders, including LDPE applications, where the ducts are very small and MW close to the water one, can benefit from the new method.


Author(s):  
Yiqi Yu ◽  
Elia Merzari ◽  
Jerome Solberg

In nuclear reactors that use plate-type fuel, the fuel plates are thermally managed with coolant flowing through channels between the plates. Depending on the flow rates and sizes of the fluid channels, the hydraulic forces exerted on a plate can be quite large. Currently, there is a worldwide effort to convert research reactors that use highly enriched uranium (HEU) fuel, some of which are plate-type, to low-enriched uranium (LEU). Because of the proposed changes to the fuel structure and thickness, a need exists to characterize the potential for flow-induced deflection of the LEU fuel plates. In this study, as an initial step, calculations of Fluid-Structure Interaction (FSI) for a flat aluminum plate separating two parallel rectangular channels are performed using the commercial code STAR-CCM+ and the integrated multi-physics code SHARP, developed under the Nuclear Energy Advanced Modeling and Simulation program. SHARP contains the high-fidelity single physics packages Diablo and Nek5000, both highly scalable and extensively validated. In this work, verification studies are performed to assess the results from both STAR-CCM+ and SHARP. The predicted deflections of the plate agree well with each other as well as exhibiting good agreement with simulations performed by the University of Missouri utilizing STAR-CCM+ coupled with the commercial structural mechanics code ABAQUS. The study provides a solid basis for FSI modeling capability for plate-type fuel element with SHARP.


2008 ◽  
Vol 9 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Jin-Ho Kim ◽  
Jae-Woo Lee ◽  
Soo-Hyung Park ◽  
Do-Young Byun ◽  
Yung-Hwan Byun ◽  
...  

AIAA Journal ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 1423-1431 ◽  
Author(s):  
Dennis Daub ◽  
Burkard Esser ◽  
Ali Gülhan

2017 ◽  
Vol 10 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Wenfeng Zhu ◽  
Chunyu LI ◽  
Yao Zhong ◽  
Peijian Lin

Author(s):  
Bhuiyan Shameem Mahmood Ebna Hai

Nowadays, advanced composite materials such as carbon fiber reinforced plastics (CFRP) are being applied to many aircraft structures in order to improve performance and reduce weight. Most composites have strong, stiff fibres in a matrix which is weaker and less stiff. However, aircraft wings can break due to Fluid-Structure Interaction (FSI) oscillations or material fatigue. The airflow around an airplane wing causes the wing to deform, while a wing deformation causes a change in the air pattern around it. Due to thrust force, turbulent flow and high speed, fluid-structure interaction (FSI) is very important and arouses complex mechanical effects. Due to the non-linear properties of fluids and solids as well as the shape of the structures, only numerical approaches can be used to solve such problems. The principal aim of this research is to explore and understand the behaviour of the fluid-structure interaction during the impact of a deformable material (e.g. an aircraft wing) on air. This project focuses on the analysis of Navier-Stokes and elastodynamic equations in the arbitrary Lagrangian-Eulerian (ALE) frameworks in order to numerically simulate the FSI effect on a double wedge airfoil. Since analytical solutions are only available in special cases, the equation needs to be solved by numerical methods. Of all methods, the finite element method was chosen due to its special characteristics and for its implementation, the software package DOpElib.


Sign in / Sign up

Export Citation Format

Share Document