scholarly journals A Data Exchange Algorithm for One Way Fluid-Structure Interaction Analysis and its Application on High-Speed Train Coupling Interface

2018 ◽  
Vol 11 (2) ◽  
pp. 519-526
Author(s):  
S. Huang ◽  
Y. Xu ◽  
L. Zhang ◽  
W. Zhu ◽  
◽  
...  
2008 ◽  
Vol 9 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Jin-Ho Kim ◽  
Jae-Woo Lee ◽  
Soo-Hyung Park ◽  
Do-Young Byun ◽  
Yung-Hwan Byun ◽  
...  

2011 ◽  
Vol 255-260 ◽  
pp. 3579-3583
Author(s):  
Bo Su ◽  
Ruo Jun Qian ◽  
Xiang Ke Han

The data transfer method for fluid structure interaction analysis using compactly supported radial based function (CRBF-FSI) is studied. It builds transfer matrix for data exchange and makes fluid and structure mesh use different shape and density unrestrictedly. Example of data exchange on 3D interface is studied. The efficient and the accurate of CRBF-FSI method are analyzed and also the influence of different compactly-supported radius is studied. The results show that CRBF-FSI method is suitable for FSI data transfer on complicated interface if compactly-supported radius is properly chosen. It has a bright future in practical use such as wind-induced response analysis in Wind Engineering.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
S. Zhou-Bowers ◽  
D. C. Rizos

Reduced 3D dynamic fluid-structure interaction (FSI) models are proposed in this paper based on a direct time-domain B-spline boundary element method (BEM). These models are used to simulate the motion of rigid bodies in infinite or semi-infinite fluid media in real, or near real, time. B-spline impulse response function (BIRF) techniques are used within the BEM framework to compute the response of the hydrodynamic system to transient forces. Higher-order spatial and temporal discretization is used in developing the kinematic FSI model of rigid bodies and computing its BIRFs. Hydrodynamic effects on the massless rigid body generated by an arbitrary transient acceleration of the body are computed by a mere superposition of BIRFs. Finally, the dynamic models of rigid bodies including inertia effects are generated by introducing the kinematic interaction model to the governing equation of motion and solve for the response in a time-marching scheme. Verification examples are presented and demonstrate the stability, accuracy, and efficiency of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document