scholarly journals Fluid–structure interaction simulation of slam-induced bending in large high-speed wave-piercing catamarans

2018 ◽  
Vol 82 ◽  
pp. 35-58 ◽  
Author(s):  
Jason McVicar ◽  
Jason Lavroff ◽  
Michael R. Davis ◽  
Giles Thomas
2021 ◽  
Vol 37 ◽  
pp. 216-229
Author(s):  
Yung Jeh Chu ◽  
Poo Balan Ganesan ◽  
Mohamad Azlin Ali

Abstract The dragonfly wings provide insights for designing an efficient biomimetic micro air vehicle (BMAV). In this regard, this study focuses on investigating the effect of the pterostigma weight loading and its spatial location on the forewings of dragonfly by using the fluid–structure interaction simulation. This study also investigates the effect of change in the wing elasticity and density on the wing performance. The forewing, which mimics the real dragonfly wing, is flat with a 47.5 mm span and a 0.4 mm thickness. The wing was set to cruise at 3 m/s with a constant flapping motion at a frequency of 25 Hz. This study shows that a small increase of pterostigma loading (11% of wing weight) at the tip of the wing significantly improves the lift to drag ratio, CL/CD, which has 129.16% increment in comparison with no loading. The lift to drag ratio depends on the pterostigma location, pterostigma loading, elastic modulus and density. The results of this study can be used as a reference in future BMAV wing optimization design.


Author(s):  
Riccardo Traversari ◽  
Alessandro Rossi ◽  
Marco Faretra

Pressure losses at the cylinder valves of reciprocating compressors are generally calculated by the classical equation of the flow through an orifice, with flow coefficient determined in steady conditions. Rotational speed has increased in the last decade to reduce compressor physical dimensions, weight and cost. Cylinder valves and associated gas passages became then more and more critical, as they determine specific consumption and throughput. An advanced approach, based on the new Fluid Structure Interaction (FSI) software, which allows to deal simultaneously with thermodynamic, motion and deformation phenomena, was utilized to simulate the complex situation that occurs in a reciprocating compressor cylinder during the motion of the piston. In particular, the pressure loss through valves, ducts and manifolds was investigated. A 3D CFD Model, simulating a cylinder with suction and discharge valves, was developed and experimentally validated. The analysis was performed in transient and turbulent condition, with compressible fluid, utilizing a deformable mesh. The 3D domain simulating the compression chamber was considered variable with the law of motion of the piston and the valve rings mobile according to the fluid dynamic forces acting on them. This procedure is particularly useful for an accurate valve loss evaluation in case of high speed compressors and heavy gases. Also very high pressure cylinders, including LDPE applications, where the ducts are very small and MW close to the water one, can benefit from the new method.


Sign in / Sign up

Export Citation Format

Share Document