Monte-Carlo based investigation of individual dosimetry in deep geological repository for high-level nuclear waste with consideration of realistic body postures

2021 ◽  
Vol 161 ◽  
pp. 108414
Author(s):  
Bo Pang ◽  
Frank Becker ◽  
Volker Metz
Author(s):  
Mostafa Fayek ◽  
Julie Brown

ABSTRACT Projects involving deep geological disposal of nuclear waste are unique in that predictive models of long-term safety often involve geological timeframes. This manuscript provides a review of natural and anthropogenic analogues for high-level nuclear waste disposal in a deep geological repository. We also occasionally highlight analogues that have been used for low- and intermediate-level waste. Most studies define natural analogues as either naturally occurring or anthropogenic systems. In this paper, we distinguish between natural analogues and anthropogenic analogues because the latter generally provide non-technical (anecdotal) illustrations of concepts and processes for the safety case, whereas the former can provide technical and quantitative information. In addition, natural analogues can provide information over geological time scales (millions of years) and spatial scales (kilometers), whereas anthropogenic analogues provide information over a much more limited time scale (hundreds or thousands of years). Regardless of the definition, analogue studies provide one of the multiple lines of evidence intended to increase confidence in the safe geological disposal of high-level nuclear waste. They are deemed necessary because they complement the experiments that are carried out over a period of months or years. They also provide a way to validate numerical long-term safety assessment models with information and data covering geological time scales and spatial scales. The first part of this review describes the analogue concept. The second and third parts provide examples of natural and anthropogenic analogues for engineered barrier systems and natural barriers. Part four describes analogues for complex coupled transport processes. Finally, we discuss general and specific areas of future research. A concerted effort should be made to ensure that there is a transfer of data from the complex, natural analogue field studies to simplistic models which, by necessity, are used to evaluate the long-term safety of deep geological repositories. Field analogue studies should be planned to interface with laboratory experiments and, ultimately, with in situ field experiments, when the final repository site is selected. This will involve using natural analogue data in a quantitative way to support the deep geological repository safety case.


2019 ◽  
Vol 9 (12) ◽  
pp. 2437 ◽  
Author(s):  
Sebastian Wegel ◽  
Victoria Czempinski ◽  
Pao-Yu Oei ◽  
Ben Wealer

The nuclear industry in the United States of America has accumulated about 70,000 metric tons of high-level nuclear waste over the past decades; at present, this waste is temporarily stored close to the nuclear power plants. The industry and the Department of Energy are now facing two related challenges: (i) will a permanent geological repository, e.g., Yucca Mountain, become available in the future, and if yes, when?; (ii) should the high-level waste be transported to interim storage facilities in the meantime, which may be safer and more cost economic? This paper presents a mathematical transportation model that evaluates the economic challenges and costs associated with different scenarios regarding the opening of a long-term geological repository. The model results suggest that any further delay in opening a long-term storage increases cost and consolidated interim storage facilities should be built now. We show that Yucca Mountain’s capacity is insufficient and additional storage is necessary. A sensitivity analysis for the reprocessing of high-level waste finds this uneconomic in all cases. This paper thus emphasizes the urgency of dealing with the high-level nuclear waste and informs the debate between the nuclear industry and policymakers on the basis of objective data and quantitative analysis.


1991 ◽  
Vol 257 ◽  
Author(s):  
Donald Langmuir ◽  
Michael J. Apted

ABSTRACTThe clay backfill that will surround a buried high level nuclear waste package in most national repository programs, could be modified to play a greater role as a barrier to radionuclide (RN) releases. The RN steady state release (Mb) rate from a clay backfill to adjacent rock is directly proportional to backfill porosity (ε), RN diffusion rate In the backfill (Ds), and RN solubility at the waste form surface (C*), and Inversely proportional to RN half-life (λ) and RN retardation coefficient (R) in the backfill [1]. We propose ways to reduce ε, Ds and C* and Increase R for important radionuclides, mostly through the addition of reactive minerals to the backfill. Silica, calcite and anhydrite may be added to precipitate and clog porosity. Increased backfill compaction similarly reducesε, Ds and Mb for all the RN's. Strongly sorbent phases can be added to selectively adsorb both cationic and anionic RN's (e.g. 1–129). However, adsorption will not Importantly reduce peak release rates of most long-lived RN's. The backfill can be poised at reducing Eh's with mineral additives to lower Ds and so immobilize radioisotopes of NI, Np, Pa, Pu, Se, Tc and U. Minerals of stable or more stable isotopes of Cs, NI, Se, Sn and U can be added to lower Ds values of the RN's and to coprecipitate them in solid solution. Phosphorite-apatites, which are known to have high selectivities for rare earths and RN's, may be added to coprecipitate Am, Np, Pu, Sr, Th and U.


1985 ◽  
Vol 50 ◽  
Author(s):  
Julia M West ◽  
Ian G McKinley ◽  
Helen A Grogan ◽  
Susan C Arme

Microbial effects are one of the possible perturbations to the expect-ed performance of a deep geological repository which must be examined as part of a comprehensive safety analysis. Recent literature surveys (eg [1, 2] ) and reconnaisance sampling studies [3, 4] have concluded that: a) microbial contamination of a repository is inevitable b) even for high level nuclear waste, conditions in the near-field are insufficiently extreme to ensure complete sterilisation.


Sign in / Sign up

Export Citation Format

Share Document