Neutronic experiment and analyses of a hybrid tritium breeding blanket mockup for CFETR

2021 ◽  
Vol 161 ◽  
pp. 108431
Author(s):  
Jimin Ma ◽  
Li An ◽  
Tie He ◽  
Tonghua Zhu ◽  
Haiping Guo ◽  
...  
Keyword(s):  
2021 ◽  
Vol 164 ◽  
pp. 112192
Author(s):  
Rundong Li ◽  
Xin Yang ◽  
Guanbo Wang ◽  
Dazhi Qian ◽  
Shuming Peng ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5234
Author(s):  
Jin Hun Park ◽  
Pavel Pereslavtsev ◽  
Alexandre Konobeev ◽  
Christian Wegmann

For the stable and self-sufficient functioning of the DEMO fusion reactor, one of the most important parameters that must be demonstrated is the Tritium Breeding Ratio (TBR). The reliable assessment of the TBR with safety margins is a matter of fusion reactor viability. The uncertainty of the TBR in the neutronic simulations includes many different aspects such as the uncertainty due to the simplification of the geometry models used, the uncertainty of the reactor layout and the uncertainty introduced due to neutronic calculations. The last one can be reduced by applying high fidelity Monte Carlo simulations for TBR estimations. Nevertheless, these calculations have inherent statistical errors controlled by the number of neutron histories, straightforward for a quantity such as that of TBR underlying errors due to nuclear data uncertainties. In fact, every evaluated nuclear data file involved in the MCNP calculations can be replaced with the set of the random data files representing the particular deviation of the nuclear model parameters, each of them being correct and valid for applications. To account for the uncertainty of the nuclear model parameters introduced in the evaluated data file, a total Monte Carlo (TMC) method can be used to analyze the uncertainty of TBR owing to the nuclear data used for calculations. To this end, two 3D fully heterogeneous geometry models of the helium cooled pebble bed (HCPB) and water cooled lithium lead (WCLL) European DEMOs were utilized for the calculations of the TBR. The TMC calculations were performed, making use of the TENDL-2017 nuclear data library random files with high enough statistics providing a well-resolved Gaussian distribution of the TBR value. The assessment was done for the estimation of the TBR uncertainty due to the nuclear data for entire material compositions and for separate materials: structural, breeder and neutron multipliers. The overall TBR uncertainty for the nuclear data was estimated to be 3~4% for the HCPB and WCLL DEMOs, respectively.


2020 ◽  
Vol 161 ◽  
pp. 112077
Author(s):  
Yan Zhong ◽  
Liwei Lin ◽  
Hongzhi Yang ◽  
Hao Wang ◽  
Guangzhong Li ◽  
...  

1995 ◽  
Vol 223 (2) ◽  
pp. 126-134 ◽  
Author(s):  
O. Renoult ◽  
J.-P. Boilot ◽  
J.-P. Korb ◽  
M. Boncoeur
Keyword(s):  
Sol Gel ◽  

1996 ◽  
Vol 31 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Sanjay Gupta ◽  
Feroz Ahmed ◽  
Suresh Garg

Sign in / Sign up

Export Citation Format

Share Document