Site-targeted evaluation of SWIFT-RIMPUFF for local-scale air dispersion modeling around Sanmen nuclear power plant based on multi-scenario wind tunnel experiments

2021 ◽  
Vol 164 ◽  
pp. 108593
Author(s):  
Xinwen Dong ◽  
Shuhan Zhuang ◽  
Sheng Fang ◽  
Hong Li ◽  
Jianzhu Cao
2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kwame Gyamfi ◽  
Sylvester Attakorah Birikorang ◽  
Emmanuel Ampomah-Amoako ◽  
John Justice Fletcher

Abstract Atmospheric dispersion modeling and radiation dose calculation have been performed for a generic 1000 MW water-water energy reactor (VVER-1000) assuming a hypothetical loss of coolant accident (LOCA). Atmospheric dispersion code, International Radiological Assessment System (InterRAS), was employed to estimate the radiological consequences of a severe accident at a proposed nuclear power plant (NPP) site. The total effective dose equivalent (TEDE) and the ground deposition were calculated for various atmospheric stability classes, A to F, with the site-specific averaged meteorological conditions. From the analysis, 3.7×10−1 Sv was estimated as the maximum TEDE corresponding to a downwind distance of 0.1 km within the dominating atmospheric stability class (class A) of the proposed site. The intervention distance for evacuation (50 mSv) and sheltering (10 mSv) were estimated for different stability classes at different distances. The intervention area for evacuation ended at 0.5 km and that for sheltering at 1.5 km. The results from the study show that designated area for public occupancy will not be affected since the estimated doses were below the annual regulatory limits of 1 mSv.


2014 ◽  
Vol 53 (2) ◽  
pp. 234-241 ◽  
Author(s):  
Dong-Peng Guo ◽  
Ren-Tai Yao ◽  
Dan Fan

AbstractThis paper introduces a wind tunnel experiment to study the effect of the cooling tower of a nuclear power plant on the flow and the characteristics of visible plume regions. The relevant characteristics of the flow field near the cooling tower, such as the plume rise and the visible plume region, are compared with the results of previous experimental data from Électricité de France (EDF) and the Briggs formulas. The results show that the wind tunnel experiment can simulate the top backflow of the cooling tower and the rear cavity regions among others. In the near-wake region, including the recirculation cavity, mean velocity decreases and turbulence intensity increases significantly. The maximum turbulence intensity observed is 0.5. In addition, the disturbed flow extent of the cooling tower top reaches 1.5 times the cooling tower height. Analysis of the visible plume region shows that the wind tunnel experiment can simulate the variation of a visible plume region. The results are consistent with the wind tunnel experiment of EDF. Moreover, the plume rise analysis shows that the wind tunnel experiment data are in agreement with the Briggs formulas for 50–200 m. As a whole, the proposed wind tunnel experiment can simulate the flow field variation of the visible plume region and the plume rise around the buildings with reasonable accuracy.


Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1185-1197 ◽  
Author(s):  
Algirdas Pabedinskas ◽  
Evaldas Maceika ◽  
Justina Šapolaitė ◽  
Žilvinas Ežerinskis ◽  
Laurynas Juodis ◽  
...  

ABSTRACTA radiocarbon (14C) activity analysis in the tree rings around Ignalina nuclear power plant (INPP) has been carried out with the aim to test the hypothesis to use 14C tree-ring analysis data as a tool for the reconstruction of gaseous releases from NPP to the environment. The INPP has been in decommissioning state since the end of 2009. Tree-ring samples for 14C analysis were collected 7 yr after final power unit shutdown from the INPP vicinity. The samples from 5 sampling locations were collected, prepared and measured using the Single Stage Accelerator Mass Spectrometer (SSAMS). Data analysis represents observable Ignalina NPP influence by 14C increase up to 15 pMC (percent modern carbon) in tree rings. Good correlations of the 14C concentrations and wind direction were obtained. The main purpose of this article was to match 14C measurement data along with the atmospheric dispersion modeling of emissions in order to retrospectively characterize the emission source.


Sign in / Sign up

Export Citation Format

Share Document