wind tunnel experiment
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 42)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Case P. Van Dam ◽  
Sai B. Mothukuri ◽  
Seyedeh Sheida Hosseini ◽  
Edward White ◽  
Lisa Brown ◽  
...  

Author(s):  
Illya Bilous ◽  
Illya Kryvohatko ◽  
Yurii Yakovlev

As of recent rapid development in the field of UAVs, unusual aerodynamic practices can be used, for example, the tandem scheme. In early planning stages, it’s important to evaluate aerodynamic characteristics of the chosen scheme and to approximate its balancing losses, as it impacts the stability and controllability of the craft. The most effective way of aerodynamic characteristics analysis is done using wind tunnels. However, it requires considerable investments in both financial terms and time, when designing the model, conducting the experiment and processing the results. Because of that, it’s worthwhile to consider the simple CFD calculations (XFOIL). This paper calculates aerodynamic characteristics of a tandem-scheme based “A-8” aircraft using XFLR5 analysis tool with the results compared to a real wind tunnel experiment. The overall conclusion of the paper is a recommendation to consider XFLR5 for early planning stages for advanced balancing losses calculation approximation.


2021 ◽  
Vol 6 (5) ◽  
pp. 1169-1190
Author(s):  
Alessandro Fontanella ◽  
Ilmas Bayati ◽  
Robert Mikkelsen ◽  
Marco Belloli ◽  
Alberto Zasso

Abstract. Floating offshore wind turbines are subjected to large motions due to the additional degrees of freedom of the floating foundation. The turbine rotor often operates in highly dynamic inflow conditions, and this has a significant effect on the overall aerodynamic response and turbine wake. Experiments are needed to get a deeper understanding of unsteady aerodynamics and hence leverage this knowledge to develop better models and to produce data for the validation and calibration of existing numerical tools. In this context, this paper presents a wind tunnel experiment about the unsteady aerodynamics of a floating turbine subjected to surge motion. The experiment results cover blade forces, rotor-integral forces, and wake. The 2D sectional model tests were carried out to characterize the aerodynamic coefficients of a low-Reynolds-number airfoil with harmonic variation in the angle of attack. The lift coefficient shows a hysteresis cycle close to stall, which grows in strength and extends in the linear region for motion frequencies higher than those typical of surge motion. Knowledge about the airfoil aerodynamic response was utilized to define the wind and surge motion conditions of the full-turbine experiment. The global aerodynamic turbine response is evaluated from rotor-thrust force measurements, because thrust influences the along-wind response of the floating turbine. It is found that experimental data follow predictions of quasi-steady theory for reduced frequency up to 0.5 reasonably well. For higher surge motion frequencies, unsteady effects may be present. The turbine near wake was investigated by means of hot-wire measurements. The wake energy is increased at the surge frequency, and the increment is proportional to the maximum surge velocity. A spatial analysis shows the wake energy increment corresponds with the blade tip. Particle image velocimetry (PIV) was utilized to visualize the blade-tip vortex, and it is observed that the vortex travel speed is modified in the presence of surge motion.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105262
Author(s):  
Toshihiko Kinugasa ◽  
Toko Sagayama ◽  
Batdelger Gantsetseg ◽  
Jiaqi Liu ◽  
Reiji Kimura

2021 ◽  
Author(s):  
Scott Lindsay

Upper surface flaps commonly referred to as spoilers or drag brakes can increase maximum lift, and improve aerodynamic efficiency at high, near-stall angles of attack. This phenomenon was studied experimentally and computationally using a 0.307626 m chord length NACA 2412 airfoil in six different configurations, and one baseline clean configuration. A wind tunnel model was placed in the Ryerson Low Speed Wind Tunnel (atmospheric, closed-circuit, 3 ft × 3 ft test section) at a Reynold’s number of approximately 780,000 and a Mach number of 0.136. The wind tunnel study increased the lift coefficient by 0.393%-2.497% depending on the spoiler configuration. A spoiler of 10% chord length increased the maximum lift coefficient by 2.497 % when deflected 8º, by 2.110% when deflected 15º, and reduced the maximum lift coefficient by 2.783% when deflected 25º. A spoiler of 15% chord length produced smaller maximum lift coefficient gains; 0.393% when deflected 8º, by 1.760% when deflected 15º, and reduced the maximum lift coefficient by 4.475% when deflected 25º. Deflecting the spoiler increased the stall angle between 37.658% and 87.544% when compared with the clean configuration. The drag coefficient of spoiler configurations was lower than the clean configuration at angles of attack above 18º. The combination of the increased lift and reduced drag at angles of attack above 18º created by the spoiler configurations resulted in a higher aerodynamic efficiency than the clean configuration case. A 10% chord length spoiler deflected at 8º produced the highest aerodynamic efficiency gains. At low angles of attack, the computational study produced consistently higher lift coefficients compared with the wind tunnel experiment. The lift-slope was consistent with the wind tunnel experiment lift-slope. The spoiler airfoil stall behaviour was inconsistent with the results from the wind tunnel experiment. The drag coefficient results were consistent with the wind tunnel experiment at low angles of attack. However, the spoiler equipped airfoils did not reduce drag at high angles of attack. Therefore, the computational model was not valid for the spoiler configurations at high angles of attack.


2021 ◽  
Author(s):  
Scott Lindsay

Upper surface flaps commonly referred to as spoilers or drag brakes can increase maximum lift, and improve aerodynamic efficiency at high, near-stall angles of attack. This phenomenon was studied experimentally and computationally using a 0.307626 m chord length NACA 2412 airfoil in six different configurations, and one baseline clean configuration. A wind tunnel model was placed in the Ryerson Low Speed Wind Tunnel (atmospheric, closed-circuit, 3 ft × 3 ft test section) at a Reynold’s number of approximately 780,000 and a Mach number of 0.136. The wind tunnel study increased the lift coefficient by 0.393%-2.497% depending on the spoiler configuration. A spoiler of 10% chord length increased the maximum lift coefficient by 2.497 % when deflected 8º, by 2.110% when deflected 15º, and reduced the maximum lift coefficient by 2.783% when deflected 25º. A spoiler of 15% chord length produced smaller maximum lift coefficient gains; 0.393% when deflected 8º, by 1.760% when deflected 15º, and reduced the maximum lift coefficient by 4.475% when deflected 25º. Deflecting the spoiler increased the stall angle between 37.658% and 87.544% when compared with the clean configuration. The drag coefficient of spoiler configurations was lower than the clean configuration at angles of attack above 18º. The combination of the increased lift and reduced drag at angles of attack above 18º created by the spoiler configurations resulted in a higher aerodynamic efficiency than the clean configuration case. A 10% chord length spoiler deflected at 8º produced the highest aerodynamic efficiency gains. At low angles of attack, the computational study produced consistently higher lift coefficients compared with the wind tunnel experiment. The lift-slope was consistent with the wind tunnel experiment lift-slope. The spoiler airfoil stall behaviour was inconsistent with the results from the wind tunnel experiment. The drag coefficient results were consistent with the wind tunnel experiment at low angles of attack. However, the spoiler equipped airfoils did not reduce drag at high angles of attack. Therefore, the computational model was not valid for the spoiler configurations at high angles of attack.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 935
Author(s):  
Gábor Négyesi ◽  
Szilárd Szabó ◽  
Botond Buró ◽  
Safwan Mohammed ◽  
József Lóki ◽  
...  

In both arid and semiarid regions, erosion by wind is a significant threat against sustainability of natural resources. The objective of this work was to investigate the direct impact of various soil moisture levels with soil texture and organic matter on soil crust formation and evaporation. Eighty soil samples with different texture (sand: 19, loamy sand: 21, sandy loam: 26, loam: 8, and silty loam: 6 samples) were collected from the Nyírség region (Eastern Hungary). A wind tunnel experiment was conducted on four simulated irrigation rates (0.5, l.0, 2.0, and 5.0 mm) and four levels of wind speeds (4.5, 7.8, 9.2, and 15.5 m s−1). Results showed that watering with a quantity equal to 5 mm rainfall, with the exception of sandy soils, provided about 5–6 h protection against wind erosion, even in case of a wind velocity as high as 15.5 m s−1. An exponential connection was revealed between wind velocities and the times of evaporation (R2 = 0.88–0.99). Notably, a two-way ANOVA test revealed that both wind velocity (p < 0.001) and soil texture (p < 0.01) had a significant effect on the rate of evaporation, but their interaction was not significant (p = 0.26). In terms of surface crusts, silty loamy soils resulted in harder and more solid crusts in comparison with other textures. In contrast, crust formation in sandy soils was almost negligible, increasing their susceptibility to wind erosion risk. These results can support local municipalities in the development of a local plan against wind erosion phenomena in agricultural areas.


Sign in / Sign up

Export Citation Format

Share Document