WPEC Subgroup 44 computational Inter-comparison exercise on correlations in nuclear data libraries

2021 ◽  
Vol 164 ◽  
pp. 108605
Author(s):  
Vladimir Sobes ◽  
Cyrille de Saint Jean ◽  
Dimitri Rochman ◽  
Oscar Cabellos ◽  
Andrew Holcomb ◽  
...  
Author(s):  
Tomáš Czakoj ◽  
Evžen Losa

Three-dimensional Monte Carlo code KENO-VI of SCALE-6.2.2 code system was applied for criticality calculation of the LR-0 reactor core. A central module placed in the center of the core was filled by graphite, lithium fluoride-beryllium fluoride (FLIBE), and lithium fluoride-sodium fluoride (FLINA) compounds. The multiplication factor was obtained for all cases using both ENDF/B-VII.0 and ENDF/B-VII.1 nuclear data libraries. Obtained results were compared with benchmark calculations in the MCNP6 using ENDF/B-VII.0 library. The results of KENO-VI calculations are found to be in good agreement with results obtained by the MCNP6. The discrepancies are typically within tens of pcm excluding the case with the FLINA filling. Sensitivities and uncertainties of the reference case with no filling were determined by a continuos-energy version of the TSUNAMI sequence of SCALE-6.2.2. The obtained uncertainty in multiplication factor due to the uncertainties in nuclear data is about 650 pcm with ENDF/B-VII.1.


2011 ◽  
Vol 59 (2(3)) ◽  
pp. 1361-1364
Author(s):  
V. Jagannathan ◽  
U. Pal ◽  
R. Karthikeyan ◽  
A. Srivastava ◽  
S. A. Khan

2018 ◽  
Vol 4 ◽  
pp. 32
Author(s):  
Juan Pablo Scotta ◽  
Gilles Noguère ◽  
Jose Ignacio Marquez Damian

The thermal scattering law (TSL) of 1H in H2O describes the interaction of the neutron with the hydrogen bound to light water. No recommended procedure exists for computing covariances of TSLs available in the international evaluated nuclear data libraries. This work presents an analytic methodology to produce such a covariance matrix-associated to the water model developed at the Atomic Center of Bariloche (Centro Atomico Bariloche, CAB, Argentina). This model is called as CAB model, it calculates the TSL of hydrogen bound to light water from molecular dynamic simulations. The performance of the obtained covariance matrix has been quantified on integral calculations at “cold” reactor conditions between 20 and 80∘ C. For UOX fuel, the uncertainty on the calculated reactivity ranges from ±71 to ±155 pcm. For MOX fuel, it ranges from ±110 to ±203 pcm.


Sign in / Sign up

Export Citation Format

Share Document