EPJ Nuclear Sciences & Technologies
Latest Publications


TOTAL DOCUMENTS

261
(FIVE YEARS 110)

H-INDEX

8
(FIVE YEARS 3)

Published By Edp Sciences

2491-9292

2022 ◽  
Vol 8 ◽  
pp. 1
Author(s):  
Heddy Barale ◽  
Camille Laguerre ◽  
Paul Sabatini ◽  
Fanny Courtin ◽  
Kévin Tirel ◽  
...  

Scenario simulations are the main tool for studying the impact of a nuclear reactor fleet on the related fuel cycle facilities. This equilibrium preliminary study aims to present the functionalities of a new tool and to show the wide variety of reactors/cycles/strategies that can be studied in steady state conditions and validated with more details thanks to dynamic code. Different types of scenario simulation tools have been developed at CEA over the years, this study focuses on dynamic and equilibrium codes. Dynamic fuel cycle simulation code models the ingoing and outgoing material flow in all the facilities of a nuclear reactor fleet and their evolutions through the different nuclear processes over a given period of time. Equilibrium fuel cycle simulation code models advanced nuclear fuel cycles in equilibrium conditions, i.e. in conditions which stabilize selected nuclear inventories such as spent nuclear fuel constituents, plutonium or some minor actinides. The principle of this work is to analyze different nuclear reactors (PWR, AMR) and several fuel types (UOX, MOX, ERU, MIX) to simulate advanced nuclear fleet with partial and fully plutonium and uranium multi-recycling strategies at equilibrium. At this first stage, selected results are compared with COSI6 simulations in order to evaluate the precision of this new tool, showing a significant general agreement.


2022 ◽  
Vol 8 ◽  
pp. 2
Author(s):  
Andrei A. Andrianov ◽  
Olga N. Andrianova ◽  
Ilya S. Kuptsov ◽  
Leonid I. Svetlichny ◽  
Tatyana V. Utianskaya

The paper presents the results of a case study on evaluating performance and sustainability metrics for Russian nuclear energy deployment scenarios with thermal and sodium-cooled fast reactors in a closed nuclear fuel cycle. Ten possible scenarios are considered which differ in the shares of thermal and sodium-cooled fast reactors, including options involving the use of mixed uranium-plutonium oxide fuel in thermal reactors. The evolution of the following performance and sustainability metrics is estimated for the period from 2020 to 2100 based on the considered assumptions: annual and cumulative uranium consumption, needs for uranium enrichment capacities, fuel fabrication and reprocessing capacities, spent fuel stocks, radioactive wastes, amounts of plutonium in the nuclear fuel cycle, amounts of accumulated depleted uranium, and the levelised electricity generation cost. The results show that the sustainability of the Russian nuclear energy system can be significantly enhanced through the intensive deployment of sodium-cooled fast reactors and the transition to a closed nuclear fuel cycle. The authors have highlighted some issues for further considerations, which will lead to more rigorous conclusions regarding the preferred options for the development of the national nuclear energy system.


2021 ◽  
Vol 7 ◽  
pp. 12
Author(s):  
Thomas Braunroth ◽  
Nadine Berner ◽  
Florian Rowold ◽  
Marc Péridis ◽  
Maik Stuke

Cosmic-ray muons can be used for the non-destructive imaging of spent nuclear fuel in sealed dry storage casks. The scattering data of the muons after traversing provides information on the thereby penetrated materials. Based on these properties, we investigate and discuss the theoretical feasibility of detecting single missing fuel rods in a sealed cask for the first time. We perform simulations of a vertically standing generic cask model loaded with fuel assemblies from a pressurized water reactor and muon detectors placed above and below the cask. By analysing the scattering angles and applying a significance ratio based on the Kolmogorov-Smirnov test statistic we conclude that missing rods can be reliably identified in a reasonable measuring time period depending on their position in the assembly and cask, and on the angular acceptance criterion of the primary, incoming muons.


2021 ◽  
Vol 7 ◽  
pp. 1
Author(s):  
Bertrand Mercier ◽  
Di Yang ◽  
Ziyue Zhuang ◽  
Jiajie Liang

We show with simplified numerical models, that for the kind of RBMK operated in Chernobyl: The core was unstable due to its large size and to its weak power counter-reaction coefficient, so that the power of the reactor was not easy to control even with an automatic system. Xenon oscillations could easily be activated. When there was xenon poisoning in the upper half of the core, the safety rods were designed in such a way that, at least initially, they were increasing (and not decreasing) the core reactivity. This reactivity increase has been sufficient to lead to a very high pressure increase in a significant amount of liquid water in the fuel channels thus inducing a strong propagating shock wave leading to a failure of half the pressure tubes at their junction with the drum separators. The depressurization phase (flash evaporation) following this failure has produced, after one second, a significant decrease of the water density in half the pressure tubes and then a strong reactivity accident due to the positive void effect reactivity coefficient. We evaluate the fission energy released by the accident


2021 ◽  
Vol 7 ◽  
pp. 26
Author(s):  
S. Richards ◽  
B. Feng

The ability to perform sensitivity analysis has been enabled for the nuclear fuel cycle simulator DYMOND through its coupling with the design and analysis toolkit Dakota. To test and demonstrate these new capabilities, a transition scenario and multi-parameter study were devised. The transition scenario represents a partial transition from the US nuclear fleet to a closed fuel cycle with small modular LWRs and fast reactors fueled by reprocessed used nuclear fuel. Four uncertain parameters in this transition were studied – start date of reprocessing, total reprocessing capacity, the nuclear energy demand growth, and the rate at which the fast reactors are deployed – with respect to their impact on four response metrics. The responses – total natural uranium consumed, maximum annual enrichment capacity required, total disposed mass, and total cost of the nuclear fuel cycle – were chosen based on measures known to be of interest in transition scenarios [2] and to be significantly impacted by the varying parameters. Analysis of this study was performed both from the direct sampling and through surrogate models developed in Dakota to calculate the global sensitivity measures Sobol’ indices. This example application of this new capability showed that the most consequential parameter to most metrics was the share of new build capacity that is fast reactors. However, for the cost metric, the scaling factor of the energy demand growth was significant and had synergistic behavior with the fast reactor new build share.


2021 ◽  
Vol 7 ◽  
pp. 7
Author(s):  
Augusto Gandini

The generalized perturbation method is described relevant to ratios of bi-linear functionals of the real and adjoint neutron fluxes of critical multiplying systems. Simple linear analysis for optimization and sensitivity studies are then feasible relative to spectrum and space-dependent quantities, such as Doppler and coolant void reactivity effects in fast reactors.


2021 ◽  
Vol 7 ◽  
pp. 19
Author(s):  
Tomohiro Okamura ◽  
Ryota Katano ◽  
Akito Oizumi ◽  
Kenji Nishihara ◽  
Masahiko Nakase ◽  
...  

Nuclear Material Balance code version 4.0 (NMB4.0) has been developed through collaborative R&D between TokyoTech&JAEA. Conventional nuclear fuel cycle simulation codes mainly analyze actinides and are specialized for front-end mass balance analysis. However, quantitative back-end simulation has recently become necessary for considering R&D strategies and sustainable nuclear energy utilization. Therefore, NMB4.0 was developed to realize the integrated nuclear fuel cycle simulation from front- to back-end. There are three technical features in NMB4.0: 179 nuclides are tracked, more than any other code, throughout the nuclear fuel cycle; the Okamura explicit method is implemented, which contributes to reducing the numerical cost while maintaining the accuracy of depletion calculations on nuclides with a shorter half-life; and flexibility of back-end simulation is achieved. The main objective of this paper is to show the newly developed functions, made for integrated back-end simulation, and verify NMB4.0 through a benchmark study to show the computational performance.


2021 ◽  
Vol 7 ◽  
pp. 25
Author(s):  
Bart Vermeeren ◽  
Hubert Druenne

The basis of the MOX (Mixed OXide) energy equivalence principle is keeping the in-core fuel management characteristics (cycle length, feed size, etc.) of a nuclear reactor unchanged when replacing UOX (Uranium OXide) fuel assemblies by MOX. If the effect of the loading pattern is neglected, such an equivalence is obtained by tuning the Pu content in the MOX fuel, while considering the specific Pu isotopic vector at the time of the core reload to obtain a crossing of the reactivity curves of UOX and MOX at the end-of-cycle core average burnup. It is proposed in this work to extend the fuel cycle analysis tool ANICCA (Advanced Nuclear Inventory Cycle Code) with a MOX equivalence Python code package, which automatically governs the supply and demand of Pu vector isotopes required to obtain MOX equivalence. This code package can determine the reactivity evolution for any given Pu vector by means of a multidimensional interpolation on a directive grid of pre-calculated data tables generated by WIMS10, covering the physically accessible Pu vector space. A fuel cycle scenario will be assessed for a representative evolution of the Pu vector inventory available in spent UOX fuel as a demonstration case, defining the interim fuel storage building dimensional requirements for different reprocessing strategies.


2021 ◽  
Vol 7 ◽  
pp. 2
Author(s):  
Nicolaas M. Bonhomme

A new approach to PWR simplification is presented, in which a compact Reactor Coolant System (RCS) configuration is introduced, particularly suited for a power level in the range of 600 MWe. Customary PWR primary system components are eliminated to achieve this RCS simplification. For example, RCS pressure control through a “self-pressurization” mode, with core exit at saturation temperature with less than 1% steam, allows elimination of a pressurizer. Also, mechanical control rods are replaced by reactivity control using negative moderator void and temperature coefficient together with variable speed primary pumps, and with an upgrade in the safety boration function. Decay heat removal in shutdown conditions is realized through the secondary side rather than through primary side equipment. The compact RCS can be installed in a small volume, high-pressure containment. The containment is divided into two leak-tight zones separated by a partition plate. Safety equipment installed in one of the two zones will be protected against adverse ambient conditions from leaks or breaks in the other zone. The partition facilitates management of coolant inventory within the RCS and the containment following RCS leaks or breaks. In particular, the safety injection system as commonly known, consisting of accumulators and multiple stages of injection pumps can be discarded and replaced by gravity-driven flooding tanks. Space available around major RCS components is adequate to avoid compromising accessibility during maintenance or in-service inspection operations. In addition, the two-zone, high-pressure containment provides extra margins in severe accident mitigation. Finally, the proposed containment has a much smaller size than customary large dry containments in PWR practice and it can be anticipated that Nuclear Island building size will similarly be reduced.


2021 ◽  
Vol 7 ◽  
pp. 10
Author(s):  
Cyrille De Saint Jean ◽  
Pierre Tamagno ◽  
Pascal Archier ◽  
Gilles Noguere

The CONRAD code is an object-oriented software tool developed at CEA since 2005. It aims at providing nuclear reaction model calculations, data assimilation procedures based on Bayesian inference and a proper framework to treat all uncertainties involved in the nuclear data evaluation process: experimental uncertainties (statistical and systematic) as well as model parameter uncertainties. This paper will present the status of CONRAD-V1 developments concerning the theoretical and evaluation aspects. Each development is illustrated with examples and calculations were validated by comparison with existing codes (SAMMY, REFIT, ECIS, TALYS) or by comparison with experiment. At the end of this paper, a general perspective for CONRAD (concerning the evaluation and theoretical modules) and actual developments will be presented.


Sign in / Sign up

Export Citation Format

Share Document