Development of a decision-making support system for the technical support center based on analysis of human performance under severe accident situation

2022 ◽  
Vol 166 ◽  
pp. 108702
Author(s):  
Seongkeun Kang ◽  
Jaemyung Yu ◽  
Poong Hyun Seong
2021 ◽  
Vol 11 (13) ◽  
pp. 6237
Author(s):  
Azharul Islam ◽  
KyungHi Chang

Unstructured data from the internet constitute large sources of information, which need to be formatted in a user-friendly way. This research develops a model that classifies unstructured data from data mining into labeled data, and builds an informational and decision-making support system (DMSS). We often have assortments of information collected by mining data from various sources, where the key challenge is to extract valuable information. We observe substantial classification accuracy enhancement for our datasets with both machine learning and deep learning algorithms. The highest classification accuracy (99% in training, 96% in testing) was achieved from a Covid corpus which is processed by using a long short-term memory (LSTM). Furthermore, we conducted tests on large datasets relevant to the Disaster corpus, with an LSTM classification accuracy of 98%. In addition, random forest (RF), a machine learning algorithm, provides a reasonable 84% accuracy. This research’s main objective is to increase the application’s robustness by integrating intelligence into the developed DMSS, which provides insight into the user’s intent, despite dealing with a noisy dataset. Our designed model selects the random forest and stochastic gradient descent (SGD) algorithms’ F1 score, where the RF method outperforms by improving accuracy by 2% (to 83% from 81%) compared with a conventional method.


Author(s):  
Giusseppi Forgionne ◽  
Stephen Russell

Contemporary decision-making support systems (DMSSs) are large systems that vary in nature, combining functionality from two or more classically defined support systems, often blurring the lines of their definitions. For example, in practical implementations, it is rare to find a decision support system (DSS) without executive information system (EIS) capabilities or an expert system (ES) without a recommender system capability. Decision-making support system has become an umbrella term spanning a broad range of systems and functional support capabilities (Alter, 2004). Various information systems have been proposed to support the decision-making process. Among others, there are DSSs, ESs, and management support systems (MSSs). Studies have been conducted to evaluate the decision effectiveness of each proposed system (Brown, 2005; Jean-Charles & Frédéric, 2003; Kanungo, Sharma, & Jain, 2001; Rajiv & Sarv, 2004). Case studies, field studies, and laboratory experiments have been the evaluation vehicles of choice (Fjermestad & Hiltz, 2001; James, Ramakrishnan, & Kustim, 2002; Kaplan, 2000). While for the most part each study has examined the decision effectiveness of an individual system, it has done so by examining the system as a whole using outcome- or user-related measures to quantify success and effectiveness (Etezadi-Amoli & Farhoomand, 1996; Holsapple & Sena, 2005; Jain, Ramamurthy, & Sundaram, 2006). When a study has included two or more systems, individual system effects typically have not been isolated. For example, Nemati, Steiger, Lyer, and Herschel (2002) presented an integrated system with both DSS and AI (artificial intelligence) functionality, but they did not explicitly test for the independent effects of the DSS and AI capabilities on the decision-making outcome and process. This article extends the previous work by examining the separate impacts of different DMSSs on decision effectiveness.


Sign in / Sign up

Export Citation Format

Share Document