scholarly journals Real-Time AI-Based Informational Decision-Making Support System Utilizing Dynamic Text Sources

2021 ◽  
Vol 11 (13) ◽  
pp. 6237
Author(s):  
Azharul Islam ◽  
KyungHi Chang

Unstructured data from the internet constitute large sources of information, which need to be formatted in a user-friendly way. This research develops a model that classifies unstructured data from data mining into labeled data, and builds an informational and decision-making support system (DMSS). We often have assortments of information collected by mining data from various sources, where the key challenge is to extract valuable information. We observe substantial classification accuracy enhancement for our datasets with both machine learning and deep learning algorithms. The highest classification accuracy (99% in training, 96% in testing) was achieved from a Covid corpus which is processed by using a long short-term memory (LSTM). Furthermore, we conducted tests on large datasets relevant to the Disaster corpus, with an LSTM classification accuracy of 98%. In addition, random forest (RF), a machine learning algorithm, provides a reasonable 84% accuracy. This research’s main objective is to increase the application’s robustness by integrating intelligence into the developed DMSS, which provides insight into the user’s intent, despite dealing with a noisy dataset. Our designed model selects the random forest and stochastic gradient descent (SGD) algorithms’ F1 score, where the RF method outperforms by improving accuracy by 2% (to 83% from 81%) compared with a conventional method.

Author(s):  
Alessandro Simeone ◽  
Yunfeng Zeng ◽  
Alessandra Caggiano

AbstractCloud manufacturing represents a valuable tool to enable wide sharing of manufacturing services and solutions by connecting suppliers and customers in large-scale manufacturing networks through a cloud platform. In this context, with increasing manufacturing network size at global scale, the elevated number of manufacturing solutions offered via cloud platform to connected customers can increase the complexity of decision-making, resulting in poor user experience from a customer perspective. To tackle this issue, in this paper, an intelligent decision-making support tool based on a manufacturing service recommendation system (RS) is designed and developed to provide for tailored manufacturing solution recommendation to customers in a cloud manufacturing system. A machine learning procedure based on neural networks for data regression is employed to process historical data on user manufacturing solution preferences and to carry out the automatic extraction of key features from incoming user instances and compatible manufacturing solutions generated by the cloud platform. In this way, the machine learning procedure is able to perform a customer segmentation and build a recommendation list characterized by a ranking of manufacturing solutions which is tailored to the specific customer profile. With the aim to validate the proposed intelligent decision-making support system, a case study is simulated within the framework of a cloud manufacturing platform delivering dynamic sharing of sheet metal cutting manufacturing solutions. The system capability is discussed in terms of machine learning performance as well as industrial applicability and user selection likelihood.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sunhae Kim ◽  
Hye-Kyung Lee ◽  
Kounseok Lee

AbstractMinnesota Multiphasic Personality Inventory-2 (MMPI-2) is a widely used tool for early detection of psychological maladjustment and assessing the level of adaptation for a large group in clinical settings, schools, and corporations. This study aims to evaluate the utility of MMPI-2 in assessing suicidal risk using the results of MMPI-2 and suicidal risk evaluation. A total of 7,824 datasets collected from college students were analyzed. The MMPI-2-Resturcutred Clinical Scales (MMPI-2-RF) and the response results for each question of the Mini International Neuropsychiatric Interview (MINI) suicidality module were used. For statistical analysis, random forest and K-Nearest Neighbors (KNN) techniques were used with suicidal ideation and suicide attempt as dependent variables and 50 MMPI-2 scale scores as predictors. On applying the random forest method to suicidal ideation and suicidal attempts, the accuracy was 92.9% and 95%, respectively, and the Area Under the Curves (AUCs) were 0.844 and 0.851, respectively. When the KNN method was applied, the accuracy was 91.6% and 94.7%, respectively, and the AUCs were 0.722 and 0.639, respectively. The study confirmed that machine learning using MMPI-2 for a large group provides reliable accuracy in classifying and predicting the subject's suicidal ideation and past suicidal attempts.


Author(s):  
M. Esfandiari ◽  
S. Jabari ◽  
H. McGrath ◽  
D. Coleman

Abstract. Flood is one of the most damaging natural hazards in urban areas in many places around the world as well as the city of Fredericton, New Brunswick, Canada. Recently, Fredericton has been flooded in two consecutive years in 2018 and 2019. Due to the complicated behaviour of water when a river overflows its bank, estimating the flood extent is challenging. The issue gets even more challenging when several different factors are affecting the water flow, like the land texture or the surface flatness, with varying degrees of intensity. Recently, machine learning algorithms and statistical methods are being used in many research studies for generating flood susceptibility maps using topographical, hydrological, and geological conditioning factors. One of the major issues that researchers have been facing is the complexity and the number of features required to input in a machine-learning algorithm to produce acceptable results. In this research, we used Random Forest to model the 2018 flood in Fredericton and analyzed the effect of several combinations of 12 different flood conditioning factors. The factors were tested against a Sentinel-2 optical satellite image available around the flood peak day. The highest accuracy was obtained using only 5 factors namely, altitude, slope, aspect, distance from the river, and land-use/cover with 97.57% overall accuracy and 95.14% kappa coefficient.


Sign in / Sign up

Export Citation Format

Share Document