Effects of adding a spectral peak generated by the second pinna resonance to a parametric model of head-related transfer functions on upper median plane sound localization

2018 ◽  
Vol 129 ◽  
pp. 239-247 ◽  
Author(s):  
Kazuhiro Iida ◽  
Yohji Ishii
2008 ◽  
Vol 17 (4) ◽  
pp. 392-404 ◽  
Author(s):  
Iwaki Toshima ◽  
Shigeaki Aoki ◽  
Tatsuya Hirahara

TeleHead I is an acoustical telepresence robot that we built on the basis of the concept that remote sound localization could be best achieved by using a user-like dummy head whose movement synchronizes with the user's head movement in real time. We clarified the characteristics of the latest version of TeleHead I, TeleHead II, and verified the validity of this concept by sound localization experiments. TeleHead II can synchronize stably with the user's head movement with a 120-ms delay. The driving noise level measured through headphones is below 24 dB SPL from 1 to 4 kHz. The shape difference between the dummy head and the user is about 3% in head width and 5% in head length. An overall measurement metric indicated that the difference between the head-related transfer functions (HRTFs) of the dummy head and the modeled listener is about 5 dB. The results of the sound localization experiments using TeleHead II clarified that head movement improves horizontal-plane sound localization performance even when the dummy head shape differs from the user's head shape. In contrast, the results for head movement when the dummy head shape and user head shape are different were inconsistent in the median plane. The accuracy of sound localization when using the same-shape dummy head with movement tethered to the user's head movement was always good. These results show that the TeleHead concept is acceptable for building an acoustical telepresence robot. They also show that the physical characteristics of TeleHead II are sufficient for conducting sound localization experiments.


2020 ◽  
pp. 3-11
Author(s):  
S.M. Afonin

Structural-parametric models, structural schemes are constructed and the transfer functions of electro-elastic actuators for nanomechanics are determined. The transfer functions of the piezoelectric actuator with the generalized piezoelectric effect are obtained. The changes in the elastic compliance and rigidity of the piezoactuator are determined taking into account the type of control. Keywords electro-elastic actuator, piezo actuator, structural-parametric model, transfer function, parametric structural scheme


2021 ◽  
Vol 150 (4) ◽  
pp. A340-A340
Author(s):  
Nathaniel J. Spencer ◽  
Zachariah N. Ennis ◽  
Natalie Jackson ◽  
Brian D. Simpson ◽  
Eric R. Thompson

Sign in / Sign up

Export Citation Format

Share Document