scholarly journals Blind estimation of speech transmission index and room acoustic parameters based on the extended model of room impulse response

2022 ◽  
Vol 185 ◽  
pp. 108372
Author(s):  
Suradej Duangpummet ◽  
Jessada Karnjana ◽  
Waree Kongprawechnon ◽  
Masashi Unoki
Author(s):  
Suradej Duangpummet ◽  
Jessada Karnjana ◽  
Waree Kongprawechnon ◽  
Masashi Unoki

2017 ◽  
Vol 42 (3) ◽  
pp. 385-394
Author(s):  
Jedrzej Kocinski ◽  
Edward Ozimek

AbstractThe paper deals with relationship between speech recognition and objective parameters of enclosures. Six enclosures were chosen: a church, an assembly hall of a music school, two courtrooms of different volumes, a typical auditorium and a university concert hall. Dirac 4.1 software was used to record impulse responses (IRs) in the chosen measurement points of each enclosure. On this base, the following objective parameters of the enclosure were determined: Reverberation Time (RT), Early Decay Time (EDT), Weighted Clarity (C50) and Speech Transmission Index (STI). A convolution of the IRs with logatome tests and the Polish Sentence Test (PST) was made. Logatome recognition and speech reception threshold (SRT - i.e., SNR yielding 50% speech recognition) were evaluated and their dependence on the objective parameters were determined. Generally a linear relationship between logatome or SRT and RT or EDT was found. However, speech recognition was nonlinearly related (according to psychometric function) to STI values. The most sensitive range of the logatome and sentence recognition relative to STI changes corresponded to the middle range of STI values. Below and above this range, logatome and sentence recognition were much less dependent of STI changes.


2020 ◽  
Vol 10 (24) ◽  
pp. 8817
Author(s):  
Lamberto Tronchin ◽  
Francesca Merli ◽  
Marco Dolci

The Eszterháza Opera House was a theatre built by the will of the Hungarian Prince Nikolaus Esterházy in the second half of the 18th century that had to compete in greatness and grandeur against Austrian Empire. The composer that inextricably linked his name to this theatre was Haydn that served the prince and composed pieces for him for many years. The Opera House disappeared from the palace complex maps around 1865 and was destroyed permanently during the Second World War. This study aims to reconstruct the original shape and materials of the theatre, thanks to the documents founded by researchers in the library of the Esterházy family at Forchtenstein, the Hungarian National Library, and analyze its acoustic behavior. With the 3D model of the theatre, acoustic simulations were performed using the architectural acoustic software Ramsete to understand its acoustical characteristics and if the architecture of the Eszterháza Opera House could favor the Prince’s listening. The obtained results show that the union between the large volume of the theatre and the reflective materials makes the Opera House a reverberant space. The acoustic parameters are considered acoustically favorable both for the music and for the speech transmission too. Moreover, the results confirm that the geometry and the shape of the Eszterháza Opera House favored the Prince’s view and listening, amplifying onstage voices and focusing the sound into his box.


2021 ◽  
Vol 69 (2) ◽  
pp. 173-179
Author(s):  
Nilolina Samardzic ◽  
Brian C.J. Moore

Traditional methods for predicting the intelligibility of speech in the presence of noise inside a vehicle, such as the Articulation Index (AI), the Speech Intelligibility Index (SII), and the Speech Transmission Index (STI), are not accurate, probably because they do not take binaural listening into account; the signals reaching the two ears can differ markedly depending on the positions of the talker and listener. We propose a new method for predicting the intelligibility of speech in a vehicle, based on the ratio of the binaural loudness of the speech to the binaural loudness of the noise, each calculated using the method specified in ISO 532-2 (2017). The method was found to give accurate predictions of the speech reception threshold (SRT) measured under a variety of conditions and for different positions of the talker and listener in a car. The typical error in the predicted SRT was 1.3 dB, which is markedly smaller than estimated using the SII and STI (2.0 dB and 2.1 dB, respectively).


Sign in / Sign up

Export Citation Format

Share Document