Nondestructive evaluation of coated structures using Lamb wave propagation

2022 ◽  
Vol 185 ◽  
pp. 108378
Author(s):  
Arash Ebrahiminejad ◽  
Ali Mardanshahi ◽  
Siavash Kazemirad
2019 ◽  
Vol 18 (5-6) ◽  
pp. 1789-1802 ◽  
Author(s):  
Subir Patra ◽  
Hossain Ahmed ◽  
Mohammadsadegh Saadatzi ◽  
Sourav Banerjee

In this article, experimental verification and validation of a peridynamics-based simulation technique, called peri-elastodynamics, are presented while simulating the guided Lamb wave propagation and wave–damage interaction for ultrasonic nondestructive evaluation and structural health monitoring applications. Peri-elastodynamics is a recently developed elastodynamic computation tool where material particles are assumed to interact with the neighboring particles nonlocally, distributed within an influence zone. First, in this article, peri-elastodynamics was used to simulate the Lamb wave modes and their interactions with the damages in a three-dimensional plate-like structure, while the accuracy and the efficacy of the method were verified using the finite element simulation method (FEM). Next, the peri-elastodynamics results were validated with the experimental results, which showed that the newly developed method is more accurate and computationally cheaper than the FEM to be used for computational nondestructive evaluation and structural health monitoring. Specifically, in this work, peri-elastodynamics was used to accurately simulate the in-plane and out-of-plane symmetric and anti-symmetric guided Lamb wave modes in a pristine plate and was extended to investigate the wave–damage interaction with damage (e.g. a crack) in the plate. Experiments were designed keeping all the simulation parameters consistent. The accuracy of the proposed technique is confirmed by performing error analysis on symmetric and anti-symmetric Lamb wave modes compared to the experimental results for pristine and damaged plates.


2005 ◽  
Vol 11 (6) ◽  
pp. 849-863 ◽  
Author(s):  
S. K. Tomar

Frequency equations are obtained for Rayleigh–Lamb wave propagation in a plate of micropolar elastic material with voids. The thickness of the plate is taken to be finite and the faces of the plate are assumed to be free from stresses. The frequency equations are obtained corresponding to symmetric and antisymmetric modes of vibrations of the plate, and some limiting cases of these equations are discussed. Numerical computations are made for a specific model to solve the frequency equations for symmetric and antisymmetric modes of propagation. It is found that both modes of vibrations are dispersive and the presence of voids has a negligible effect on these dispersion curves. However, the attenuation coefficient is found to be influenced by the presence of voids. The results of some earlier works are also deduced from the present formulation.


2004 ◽  
Vol 35 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Cunli Wu ◽  
Xiasheng Sun ◽  
Shihui Duan ◽  
Tong Fang

Sign in / Sign up

Export Citation Format

Share Document