Two-stage catalyst system for selective catalytic reduction of NOx by NH3 at low temperatures

2006 ◽  
Vol 68 (1-2) ◽  
pp. 21-27 ◽  
Author(s):  
M KANG ◽  
D KIM ◽  
E PARK ◽  
J KIM ◽  
J YIE ◽  
...  
2020 ◽  
Vol 10 (16) ◽  
pp. 5525-5534 ◽  
Author(s):  
Jialiang Gu ◽  
Bingjun Zhu ◽  
Rudi Duan ◽  
Yan Chen ◽  
Shaoxin Wang ◽  
...  

MnOx–FeOx-Loaded silicalite-1 catalysts exhibit high NOx conversion at low temperatures.


2013 ◽  
Vol 216 ◽  
pp. 76-81 ◽  
Author(s):  
Zhiming Liu ◽  
Yang Yi ◽  
Shaoxuan Zhang ◽  
Tianle Zhu ◽  
Junzhi Zhu ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1034 ◽  
Author(s):  
Caixia Liu ◽  
Huijun Wang ◽  
Ziyin Zhang ◽  
Qingling Liu

The selective catalytic reduction (SCR) has been widely used in industrial denitrification owing to its high denitrification efficiency, low operating costs, and simple operating procedures. However, coal containing a large amount of sulfur will produce SO2 during combustion, which makes the catalyst easy to be deactivated, thus limiting the application of this technology. This review summarizes the latest NH3-SCR reaction mechanisms and the deactivation mechanism of catalyst in SO2-containing flue gas. Some strategies are summarized for enhancing the poison-resistance through modification, improvement of support, the preparation of complex oxide catalyst, optimizing the preparation methods, and acidification. The mechanism of improving sulfur resistance of catalysts at low temperatures is summarized, and the further development of the catalyst is also prospected. This paper could provide a reference and guidance for the development of SO2 resistance of the catalyst at low temperatures.


Catalysts ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 71 ◽  
Author(s):  
Anna Stahl ◽  
Zhong Wang ◽  
Tobias Schwämmle ◽  
Jun Ke ◽  
Xuebing Li

Sign in / Sign up

Export Citation Format

Share Document