The impact of urea on the performance of metal exchanged zeolites for the selective catalytic reduction of NOxPart I. Pyrolysis and hydrolysis of urea over zeolite catalysts

2010 ◽  
Vol 97 (1-2) ◽  
pp. 90-97 ◽  
Author(s):  
Maik Eichelbaum ◽  
Robert J. Farrauto ◽  
Marco J. Castaldi
Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 336
Author(s):  
Deniz Zengel ◽  
Simon Barth ◽  
Maria Casapu ◽  
Jan-Dierk Grunwaldt

Positioning the catalysts in front of the turbocharger has gained interest over recent years due to the earlier onset temperature and positive effect of elevated pressure. However, several challenges must be overcome, like presence of higher pollutant concentrations due to the absence or insufficient diesel oxidation catalyst volume at this location. In this context, our study reports a systematic investigation on the effect of pressure and various hydrocarbons during selective catalytic reduction (SCR) of NOx with NH3 over the zeolite-based catalysts Fe-ZSM-5 and Cu-SSZ-13. Using a high-pressure catalyst test bench, the catalytic activity of both zeolite catalysts was measured in the presence and absence of a variety of hydrocarbons under pressures and temperatures resembling the conditions upstream of the turbocharger. The results obtained showed that the hydrocarbons are incompletely converted over both catalysts, resulting in numerous byproducts. The emission of hydrogen cyanide seems to be particularly problematic. Although the increase in pressure was able to improve the oxidation of hydrocarbons and significantly reduce the formation of HCN, sufficiently low emissions could only be achieved at high temperatures. Regarding the NOx conversion, a boost in activity was obtained by increasing the pressure compared to atmospheric reaction conditions, which compensated the negative effect of hydrocarbons on the SCR activity.


2020 ◽  
Vol 59 (44) ◽  
pp. 19500-19509
Author(s):  
Jie Zeng ◽  
Siyu Chen ◽  
Zhenhui Fan ◽  
Chizhong Wang ◽  
Huazhen Chang ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1391
Author(s):  
Yu Qiu ◽  
Chi Fan ◽  
Changcheng Sun ◽  
Hongchang Zhu ◽  
Wentian Yi ◽  
...  

To reveal the nature of SO2 poisoning over Cu-SSZ-13 catalyst under actual exhaust conditions, the catalyst was pretreated at 200 and 500 °C in a flow containing NH3, NO, O2, SO2, and H2O. Brunner−Emmet−Teller (BET), X-ray diffraction(XRD), thermo gravimetric analyzer (TGA), ultraviolet Raman spectroscopy (UV Raman), temperature-programmed reduction with H2 (H2-TPR), temperature-programmed desorption of NO+O2 (NO+O2-TPD), NH3-TPD, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and an activity test were utilized to monitor the changes of Cu-SSZ-13 before and after in situ SO2 poisoning. According to the characterization results, the types and generated amount of sulfated species were directly related to poisoning temperature. Three sulfate species, including (NH4)2SO4, CuSO4, and Al2(SO4)3, were found to form on CZ-S-200, while only the latter two sulfate species were observed over CZ-S-500. Furthermore, SO2 poisoning had a negative effect on low-temperature selective catalytic reduction (SCR) activity, which was mainly due to the sulfation of active sites, including Z2Cu, ZCuOH, and Si-O(H)-Al. In contrast, SO2 poisoning had a positive effect on high-temperature SCR activity, owing to the inhibition of the NH3 oxidation reaction. The above findings may be a useful guideline to design excellent SO2-resistant Cu-based zeolite catalysts.


2000 ◽  
Author(s):  
Dennis L. Laudal ◽  
John H. Pavlish ◽  
Kevin C. Galbreath ◽  
Jeffrey S. Thompson ◽  
Gregory F. Weber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document