so2 poisoning
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 3)

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1360
Author(s):  
Xianlong Zhang ◽  
Shiwen Liu ◽  
Kang Ma ◽  
Yazhong Chen ◽  
Shi Jin ◽  
...  

Manganese oxide-supported palygorskite (MnOX/PG) catalysts are considered highly efficient for low-temperature SCR of NOx. However, the MnOX/PG catalyst tends to be poisoned by SO2. The effect of SO2 on activity of the SO2-pretreated poisoning catalysts under ammonia-free conditions was explored. It was determined that the MnOx/PG catalyst tends to be considerably deactivated by SO2 in the absence of ammonia and that water-washed regeneration can completely recover activity of the deactivated catalyst. Based on these results and characterizations of the catalysts, a reasonable mechanism for the deactivation of MnOx/PG catalyst by SO2 was proposed in this study. SO2 easily oxidized to SO3 on the surface of the catalyst, leading to the formation of polysulfuric acid, wrapping of the active component and blocking the micropores. The deactivation of the MnOx/PG catalyst is initially caused by the formation of polysulfuric rather than the deposition of ammonia sulfate, which occurs later.


2021 ◽  
Author(s):  
Zhiyu Li ◽  
Jinding Chen ◽  
Man Jiang ◽  
Linna Li ◽  
Jingyi Zhang ◽  
...  

ACS Catalysis ◽  
2021 ◽  
pp. 4125-4135
Author(s):  
Xue Fang ◽  
Yongjun Liu ◽  
Yan Cheng ◽  
Wanglai Cen

Author(s):  
Wei-Jing Li ◽  
Shu Tsai ◽  
Ming-Yen Wey

Cu/Co catalysts were prepared on halloysite nanotube supports by a urea-driven deposition-precipitation method for CO oxidation and the selective catalytic reduction of NO (CO-SCR). First, the Cu/NH3 molar ratio was...


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1426
Author(s):  
Marwa Saad ◽  
Agnieszka Szymaszek ◽  
Anna Białas ◽  
Bogdan Samojeden ◽  
Monika Motak

A series of materials based on activated carbon (AC) with copper deposited in various amounts were prepared using an incipient wetness impregnation method and tested as catalysts for selective catalytic reduction of nitrogen oxides with ammonia. The samples were poisoned with SO2 and regenerated in order to analyze their susceptibility to deactivation by the harmful component of exhaust gas. NO conversion over the fresh catalyst doped with 10 wt.% of Cu reached 81% of NO conversion at 140 °C and about 90% in the temperature range of 260–300 °C. The rate of poisoning with SO2 was dependent on Cu loading, but in general, it lowered NO conversion due to the formation of (NH4)2SO4 deposits that blocked the active sites of the catalysts. After regeneration, the catalytic activity of the materials was restored and NO conversion exceeded 70% for all of the samples.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1391
Author(s):  
Yu Qiu ◽  
Chi Fan ◽  
Changcheng Sun ◽  
Hongchang Zhu ◽  
Wentian Yi ◽  
...  

To reveal the nature of SO2 poisoning over Cu-SSZ-13 catalyst under actual exhaust conditions, the catalyst was pretreated at 200 and 500 °C in a flow containing NH3, NO, O2, SO2, and H2O. Brunner−Emmet−Teller (BET), X-ray diffraction(XRD), thermo gravimetric analyzer (TGA), ultraviolet Raman spectroscopy (UV Raman), temperature-programmed reduction with H2 (H2-TPR), temperature-programmed desorption of NO+O2 (NO+O2-TPD), NH3-TPD, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and an activity test were utilized to monitor the changes of Cu-SSZ-13 before and after in situ SO2 poisoning. According to the characterization results, the types and generated amount of sulfated species were directly related to poisoning temperature. Three sulfate species, including (NH4)2SO4, CuSO4, and Al2(SO4)3, were found to form on CZ-S-200, while only the latter two sulfate species were observed over CZ-S-500. Furthermore, SO2 poisoning had a negative effect on low-temperature selective catalytic reduction (SCR) activity, which was mainly due to the sulfation of active sites, including Z2Cu, ZCuOH, and Si-O(H)-Al. In contrast, SO2 poisoning had a positive effect on high-temperature SCR activity, owing to the inhibition of the NH3 oxidation reaction. The above findings may be a useful guideline to design excellent SO2-resistant Cu-based zeolite catalysts.


Sign in / Sign up

Export Citation Format

Share Document