hydrolysis of urea
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 8)

H-INDEX

25
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1703
Author(s):  
Mukhtar Nuhu Yahya ◽  
Hüseyin Gökçekuş ◽  
Derin Orhon ◽  
Bülent Keskinler ◽  
Ahmet Karagunduz ◽  
...  

1. Background: Urea is the main product of the nitrogenous breakdown of protein metabolism in mammals. In this study, process intensification for enzymatic hydrolysis of urea by urease enzyme (jack bean urease) was examined in a membrane reactor. 2. Methods: Batch and continuous enzymatic hydrolysis reactions were performed at different substrate concentrations to determine the digestibility and affinity of the substrate with that of the enzyme. The hydrolysate samples were obtained by an optimized continuous enzyme membrane reactor (EMR) coupled with an ultra-filtration membrane (250 kDa). Feed concentration varied from 100 to 500 mg/L. Laboratory experiments were conducted at room temperature (20 ± 1 °C), with a flow rate of 20 mL/min, urease concentration of 0.067 g/L, ionic strength (I = 0, 0.01, 0.05), and ammonium nitrogen addition of (0, 100 mg/L, 200 mg/L, 500 mg/L). Moreover, the effect of ionic strength, ammonium nitrogen concentration, feed concentration, and enzyme concentration on urea hydrolysis was examined. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX) analysis were used to identify the physicochemical properties as well as the elemental composition of the Ultra-Filtration membrane used in this study. 3. Results: The study revealed that higher ionic strength and higher concentrations of NH4SO2 and ammonium nitrogen (NH3-N) inhibithydrolysis of urea by reducing the urease enzyme activity in the system over time. 4. Conclusions: Herein, a sustainable alternative for the conversion of urea to ammonia by utilizing urease in an EMR was demonstrated.


2021 ◽  
Vol 282 ◽  
pp. 128693
Author(s):  
Deshou Zhang ◽  
Hang Yao ◽  
Ziliang Zheng ◽  
Feng Hu ◽  
Min Wu ◽  
...  

Author(s):  
Chenyuan Guo ◽  
Shuguang Shen ◽  
Meina Li ◽  
Ying Wang ◽  
Jing Li ◽  
...  

Author(s):  
Jingcheng Su ◽  
Fangming Xue ◽  
Feng Chen ◽  
Yiqing Sun ◽  
Xiuru Liu

Sign in / Sign up

Export Citation Format

Share Document