sulfate species
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 9)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Hui Kang ◽  
Mengxia Wu ◽  
Shiyan Li ◽  
Chunhong Wei ◽  
Xiaoping Chen ◽  
...  

Author(s):  
Gábor Tóth ◽  
Domonkos Pál ◽  
Károly Vékey ◽  
László Drahos ◽  
Lilla Turiák

AbstractChondroitin sulfate (CS) is a widely studied class of glycosaminoglycans, responsible for diverse biological functions. Structural analysis of CS is generally based on disaccharide analysis. Sample preparation is a key analytical issue in this case. However, a detailed study on the stability and recovery of CS-derived species has been lacking so far. We have found that for solvent exchange, in general, vacuum evaporation (SpeedVac) is much preferable than lyophilization. Moreover, in the case of aqueous solutions, higher recovery was experienced than in solutions with high organic solvent content. Storage of the resulting disaccharide mixture in typical HPLC injection solvents is also critical; decomposition starts after 12 h at 4 °C; therefore, the mixtures should not be kept in the sample tray of an automatic injector for a long time. The study, therefore, lays down suggestions on proper sample preparation and measurement conditions for biologically derived chondroitin sulfate species.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1391
Author(s):  
Yu Qiu ◽  
Chi Fan ◽  
Changcheng Sun ◽  
Hongchang Zhu ◽  
Wentian Yi ◽  
...  

To reveal the nature of SO2 poisoning over Cu-SSZ-13 catalyst under actual exhaust conditions, the catalyst was pretreated at 200 and 500 °C in a flow containing NH3, NO, O2, SO2, and H2O. Brunner−Emmet−Teller (BET), X-ray diffraction(XRD), thermo gravimetric analyzer (TGA), ultraviolet Raman spectroscopy (UV Raman), temperature-programmed reduction with H2 (H2-TPR), temperature-programmed desorption of NO+O2 (NO+O2-TPD), NH3-TPD, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and an activity test were utilized to monitor the changes of Cu-SSZ-13 before and after in situ SO2 poisoning. According to the characterization results, the types and generated amount of sulfated species were directly related to poisoning temperature. Three sulfate species, including (NH4)2SO4, CuSO4, and Al2(SO4)3, were found to form on CZ-S-200, while only the latter two sulfate species were observed over CZ-S-500. Furthermore, SO2 poisoning had a negative effect on low-temperature selective catalytic reduction (SCR) activity, which was mainly due to the sulfation of active sites, including Z2Cu, ZCuOH, and Si-O(H)-Al. In contrast, SO2 poisoning had a positive effect on high-temperature SCR activity, owing to the inhibition of the NH3 oxidation reaction. The above findings may be a useful guideline to design excellent SO2-resistant Cu-based zeolite catalysts.


2020 ◽  
Vol 496 ◽  
pp. 111191
Author(s):  
Dong Ye ◽  
Xiaoxiang Wang ◽  
Hui Liu ◽  
Haining Wang
Keyword(s):  
Nh3 Scr ◽  

Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 726
Author(s):  
Justin Marlowe ◽  
Shreyas Acharya ◽  
Adam Zuber ◽  
George Tsilomelekis

Understanding the catalytic behavior of sulfated metal oxides has been the topic of several research studies in the past few decades. Their apparent super-acidic behavior has been correlated with the molecular structure of the surface sulfate species. Herein, we couple FTIR and Raman spectroscopies to study the molecular structural evolution of surface sulfate species on mixed metal hydroxides as well as calcined oxides. We show that on the surface of hydroxides, monodentate and possibly bidentate species are dominant, while for SnO2-rich samples, clusters of polymeric sulfate species may also be present. After calcination, sulfate species bind strongly on the surface of mixed oxides, and different configurations can be seen with a range of S=O functionalities of varying strength. Through comparison of the catalytic performance of all sulfate oxides in the tert-butylation of phenol, it was found that SnO2-rich samples show high TBA conversion, with monoalkylated phenols as the primary product.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 492
Author(s):  
Jesus Emmanuel De Abreu Goes ◽  
Annika Kristoffersson ◽  
Louise Olsson

In the present work, a series of different materials was investigated in order to enhance the understanding of the role of modern lean NOx trap (LNT) components on the sulfur poisoning and regeneration characteristics. Nine different types of model catalysts were prepared, which mainly consisted of three compounds: (i) Al2O3, (ii) Mg/Al2O3, and (iii) Mg/Ce/Al2O3 mixed with Pt, Pd, and Pt-Pd. A micro flow reactor and a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) were employed in order to investigate the evolution and stability of the species formed during SO2 poisoning. The results showed that the addition of palladium and magnesium into the LNT formulation can be beneficial for the catalyst desulfation due mainly to the ability to release the sulfur trapped at relatively low temperatures. This was especially evident for Pd/Mg/Al2O3 model catalyst, which demonstrated an efficient LNT desulfation with low H2 consumption. In contrast, the addition of ceria was found to increase the formation of bulk sulfate species during SO2 poisoning, which requires higher temperatures for the sulfur removal. The noble metal nature was also observed to play an important role on the SOx storage and release properties. Monometallic Pd-based catalysts exhibited the formation of surface palladium sulfate species during SO2 exposure, whereas Pt-Pd bimetallic formulations presented higher stability of the sulfur species formed compared to the corresponding Pt- and Pd-monometallic samples.


Catalysts ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 23 ◽  
Author(s):  
Hua Pan ◽  
Dongmei Xu ◽  
Chi He ◽  
Chao Shen

Regeneration and deactivation behaviors of Co-Zn/H-Beta catalysts were investigated in NOx reduction with C3H8. Co-Zn/H-Beta exhibited a good water resistance in the presence of 10 vol.% H2O. However, there was a significant drop off in N2 yield in the presence of SO2. The formation of surface sulfate and coke decreased the surface area, blocked the pore structure, and reduced the availability of active sites of Co-Zn/H-Beta during the reaction of NO reduction by C3H8. The activity of catalyst regenerated by air oxidation followed by H2 reduction was higher than that of catalyst regenerated by H2 reduction followed by air oxidation. Among the catalysts regenerated by air oxidation followed by H2 reduction with different regeneration temperatures, the optimal regeneration temperature was 550 °C. The textural properties of poisoned catalysts could be restored to the levels of fresh catalysts by the optimized regeneration process. The regeneration process of air oxidation followed by H2 reduction could recover the active sites of cobalt and zinc species from sulfate species, as well as eliminate coke deposition on poisoned catalysts. The regeneration pathway of air oxidation followed by H2 reduction is summarized as initial removal of coke by air oxidation and final reduction of the sulfate species by H2.


Sign in / Sign up

Export Citation Format

Share Document