Sliding mode controller for the single-phase grid-connected photovoltaic system

2006 ◽  
Vol 83 (10) ◽  
pp. 1101-1115 ◽  
Author(s):  
Il-Song Kim
Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 282 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Thanh Long Duong ◽  
Minh Quan Duong ◽  
Duc Tung Le

Variable structure control with sliding mode can provide good control performance and excellent robustness. Unfortunately, the chattering phenomenon investigated due to discontinuous switching gain restricting their applications. In this paper, a chattering free improved variable structure control (IVSC) for a class of mismatched uncertain interconnected systems with an unknown time-varying delay is proposed. A sliding function is first established to eliminate the reaching phase in traditional variable structure control (TVSC). Next, a new reduced-order sliding mode estimator (ROSME) without time-varying delay is constructed to estimate all unmeasurable state variables of plants. Then, based on the Moore-Penrose inverse approach, a decentralized single-phase robustness sliding mode controller (DSPRSMC) is synthesized, which is independent of time delays. A DSPRSMC solves a complex interconnection problem with an unknown time-varying delay term and drives the system’s trajectories onto a switching surface from the initial time instance. Particularly, by applying the well-known Barbalat’s lemma, the chattering phenomenon in control input is alleviated. Moreover, a sufficient condition is established by using an appropriate Lyapunov theory and linear matrix inequality (LMI) method such that a sliding mode dynamics is asymptotically stable from the beginning time. Finally, a developed method is validated by numerical example with computer simulations.


2020 ◽  
Vol 67 (8) ◽  
pp. 6439-6449 ◽  
Author(s):  
Farzaneh Bagheri ◽  
Hasan Komurcugil ◽  
Osman Kukrer ◽  
Naki Guler ◽  
Sertac Bayhan

2019 ◽  
Author(s):  
Borni Abdelhalim ◽  
Bouchakour Abdelhak ◽  
Bessous Noureddine ◽  
Abdelkrim Thameur ◽  
Lakhdari Abdelkader ◽  
...  

2020 ◽  
Vol 42 (9) ◽  
pp. 1594-1617
Author(s):  
Gomaa Haroun AH ◽  
Yin-Ya Li

In this article, a novel hybrid intelligent Proportional Integral Derivative (PID)-based sliding mode controller (IPID-SMC) is proposed to solve the LFC problem for realistic interconnected multi-area power systems. The optimization task for best-regulating parameters of the suggested controller structure is fulfilled by the ant lion optimizer (ALO) technique. To assess the usefulness and practicability of the suggested ALO optimized IPID-SMC controller, three test systems – that is, four-area hybrid power system, two-area reheat thermal-photovoltaic system and two-area multi-sources power system – are employed. Different nonlinearities such as generation rate constraint (GRC) and governor dead band (GDB) as a provenance of physical constraints are taken into account in the model of the two-area multi-sources power systems to examine the ability of the proposed strategy for handling the practical challenges. The acceptability and novelty of the ALO-based IPID-SMC controller to solve the systems mentioned above are appraised in comparison with some recently reported approaches. The specifications of time-domain simulation disclose that the designed proposed controller provides a desirable level of performance and stability compared with other existing strategies. Furthermore, to check the robustness of the suggested technique, sensitivity analysis is fulfilled by varying the operating loading conditions and plant parameters within a particular tolerable range.


Sign in / Sign up

Export Citation Format

Share Document