Economic analysis of CO2 capture from natural gas combined cycles using Molten Carbonate Fuel Cells

2014 ◽  
Vol 130 ◽  
pp. 562-573 ◽  
Author(s):  
S. Campanari ◽  
P. Chiesa ◽  
G. Manzolini ◽  
S. Bedogni
Author(s):  
Maurizio Spinelli ◽  
Stefano Campanari ◽  
Matteo C. Romano ◽  
Stefano Consonni ◽  
Thomas G. Kreutz ◽  
...  

The state-of-the-art conventional technology for post combustion capture of CO2 from fossil-fuelled power plants is based on chemical solvents, which requires substantial energy consumption for regeneration. Apromising alternative, available in the near future, is the application of Molten Carbonate Fuel Cells (MCFC) for CO2 separation from post-combustion flue gases. Previous studies related to this technology showed both high efficiency and high carbon capture rates, especially when the fuel cell is thermally integrated in the flue gas path of a natural gas-fired combined cycle or an integrated gasification combined cycle plant. This work compares the application of MCFC based CO2 separation process to pulverized coal fired steam cycles (PCC) and natural gas combined cycles (NGCC) as a ‘retrofit’ to the original power plant. Mass and energy balances are calculated through detailed models for both power plants, with fuel cell behaviour simulated using a 0D model calibrated against manufacturers’ specifications and based on experimental measurements, specifically carried out to support this study. The resulting analysis includes a comparison of the energy efficiency and CO2 separation efficiency as well as an economic comparison of the cost of CO2 avoided under several economic scenarios. The proposed configurations reveal promising performance, exhibiting very competitive efficiency and economic metrics in comparison with conventional CO2 capture technologies. Application as a MCFC retrofit yields a very limited (<3%) decrease in efficiency for both power plants (PCC and NGCC), a strong reduction (>80%) in CO2 emission and a competitive cost for CO2 avoided (25–40 €/ton).


Author(s):  
Maurizio Spinelli ◽  
Stefano Campanari ◽  
Stefano Consonni ◽  
Matteo C. Romano ◽  
Thomas Kreutz ◽  
...  

The state-of-the-art conventional technology for postcombustion capture of CO2 from fossil-fueled power plants is based on chemical solvents, which requires substantial energy consumption for regeneration. A promising alternative, available in the near future, is the application of molten carbonate fuel cells (MCFC) for CO2 separation from postcombustion flue gases. Previous studies related to this technology showed both high efficiency and high carbon capture rates, especially when the fuel cell is thermally integrated in the flue gas path of a natural gas-fired combined cycle or an integrated gasification combined cycle plant. This work compares the application of MCFC-based CO2 separation process to pulverized coal fired steam cycles (PCC) and natural gas combined cycles (NGCC) as a “retrofit” to the original power plant. Mass and energy balances are calculated through detailed models for both power plants, with fuel cell behavior simulated using a 0D model calibrated against manufacturers' specifications and based on experimental measurements, specifically carried out to support this study. The resulting analysis includes a comparison of the energy efficiency and CO2 separation efficiency as well as an economic comparison of the cost of CO2 avoided (CCA) under several economic scenarios. The proposed configurations reveal promising performance, exhibiting very competitive efficiency and economic metrics in comparison with conventional CO2 capture technologies. Application as a MCFC retrofit yields a very limited (<3%) decrease in efficiency for both power plants (PCC and NGCC), a strong reduction (>80%) in CO2 emission and a competitive cost for CO2 avoided (25–40 €/ton).


2014 ◽  
Vol 63 ◽  
pp. 6517-6526 ◽  
Author(s):  
Maurizio Spinelli ◽  
Matteo C. Romano ◽  
Stefano Consonni ◽  
Stefano Campanari ◽  
Maurizio Marchi ◽  
...  

2016 ◽  
Vol 320 ◽  
pp. 332-342 ◽  
Author(s):  
Linda Barelli ◽  
Gianni Bidini ◽  
Stefano Campanari ◽  
Gabriele Discepoli ◽  
Maurizio Spinelli

2019 ◽  
Vol 88 ◽  
pp. 195-208 ◽  
Author(s):  
Luca Mastropasqua ◽  
Lorenzo Pierangelo ◽  
Maurizio Spinelli ◽  
Matteo C. Romano ◽  
Stefano Campanari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document