Membranes and Molten Carbonate Fuel Cells to Capture CO2 and Increase Energy Production in Natural Gas Power Plants

2013 ◽  
Vol 52 (26) ◽  
pp. 8755-8764 ◽  
Author(s):  
Paolo Greppi ◽  
Barbara Bosio ◽  
Elisabetta Arato
Author(s):  
Maurizio Spinelli ◽  
Stefano Campanari ◽  
Stefano Consonni ◽  
Matteo C. Romano ◽  
Thomas Kreutz ◽  
...  

The state-of-the-art conventional technology for postcombustion capture of CO2 from fossil-fueled power plants is based on chemical solvents, which requires substantial energy consumption for regeneration. A promising alternative, available in the near future, is the application of molten carbonate fuel cells (MCFC) for CO2 separation from postcombustion flue gases. Previous studies related to this technology showed both high efficiency and high carbon capture rates, especially when the fuel cell is thermally integrated in the flue gas path of a natural gas-fired combined cycle or an integrated gasification combined cycle plant. This work compares the application of MCFC-based CO2 separation process to pulverized coal fired steam cycles (PCC) and natural gas combined cycles (NGCC) as a “retrofit” to the original power plant. Mass and energy balances are calculated through detailed models for both power plants, with fuel cell behavior simulated using a 0D model calibrated against manufacturers' specifications and based on experimental measurements, specifically carried out to support this study. The resulting analysis includes a comparison of the energy efficiency and CO2 separation efficiency as well as an economic comparison of the cost of CO2 avoided (CCA) under several economic scenarios. The proposed configurations reveal promising performance, exhibiting very competitive efficiency and economic metrics in comparison with conventional CO2 capture technologies. Application as a MCFC retrofit yields a very limited (<3%) decrease in efficiency for both power plants (PCC and NGCC), a strong reduction (>80%) in CO2 emission and a competitive cost for CO2 avoided (25–40 €/ton).


Author(s):  
Maurizio Spinelli ◽  
Stefano Campanari ◽  
Matteo C. Romano ◽  
Stefano Consonni ◽  
Thomas G. Kreutz ◽  
...  

The state-of-the-art conventional technology for post combustion capture of CO2 from fossil-fuelled power plants is based on chemical solvents, which requires substantial energy consumption for regeneration. Apromising alternative, available in the near future, is the application of Molten Carbonate Fuel Cells (MCFC) for CO2 separation from post-combustion flue gases. Previous studies related to this technology showed both high efficiency and high carbon capture rates, especially when the fuel cell is thermally integrated in the flue gas path of a natural gas-fired combined cycle or an integrated gasification combined cycle plant. This work compares the application of MCFC based CO2 separation process to pulverized coal fired steam cycles (PCC) and natural gas combined cycles (NGCC) as a ‘retrofit’ to the original power plant. Mass and energy balances are calculated through detailed models for both power plants, with fuel cell behaviour simulated using a 0D model calibrated against manufacturers’ specifications and based on experimental measurements, specifically carried out to support this study. The resulting analysis includes a comparison of the energy efficiency and CO2 separation efficiency as well as an economic comparison of the cost of CO2 avoided under several economic scenarios. The proposed configurations reveal promising performance, exhibiting very competitive efficiency and economic metrics in comparison with conventional CO2 capture technologies. Application as a MCFC retrofit yields a very limited (<3%) decrease in efficiency for both power plants (PCC and NGCC), a strong reduction (>80%) in CO2 emission and a competitive cost for CO2 avoided (25–40 €/ton).


2016 ◽  
Vol 320 ◽  
pp. 332-342 ◽  
Author(s):  
Linda Barelli ◽  
Gianni Bidini ◽  
Stefano Campanari ◽  
Gabriele Discepoli ◽  
Maurizio Spinelli

Author(s):  
Suping Peng

AbstractCoal has been the main energy source in China for a long period. Therefore, the energy industry must improve coal power generation efficiency and achieve near-zero CO2 emissions. Integrated gasification fuel cell (IGFC) systems that combine coal gasification and high-temperature fuel cells, such as solid oxide fuel cells or molten carbonate fuel cells (MCFCs), are proving to be promising for efficient and clean power generation, compared with traditional coal-fired power plants. In 2017, with the support of National Key R&D Program of China, a consortium led by the China Energy Group and including 12 institutions was formed to develop the advanced IGFC technology with near-zero CO2 emissions. The objectives of this project include understanding the performance of an IGFC power generation system under different operating conditions, designing master system principles for engineering optimization, developing key technologies and intellectual property portfolios, setting up supply chains for key materials and equipment, and operating the first megawatt IGFC demonstration system with near-zero CO2 emission, in early 2022. In this paper, the main developments and projections pertaining to the IGFC project are highlighted.


Sign in / Sign up

Export Citation Format

Share Document