Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine

2014 ◽  
Vol 130 ◽  
pp. 190-199 ◽  
Author(s):  
Xingyu Liang ◽  
Xiuxiu Sun ◽  
Hua Tian ◽  
Gequn Shu ◽  
Yuesen Wang ◽  
...  
2021 ◽  
Vol 2131 (2) ◽  
pp. 022072
Author(s):  
E Gubin ◽  
S Andriushchenko ◽  
K Mochalin

Abstract During the operation of internal combustion engines, deformation of the cylinder sleeve is possible, which causes its premature wear during the operation of the “piston ring – sleeve” pair. Imagine the sleeve as a two-stage hollow cylinder with forces applied to it, which cause deflection in the section. It can be assumed that if the greatest deformation of the cylinder is in the section of the application of forces, then with distance from this place it will decrease. At some distance from the point of application of forces, the deflection of the sleeve will be equal to zero. It is required to simulate a mathematical formula that would make it possible to evaluate the possibility of estimating the value depending on the basic geometric dimensions of the cylinder sleeve. A mathematical model of the deformation process of a hollow two-stage sleeve of an internal combustion engine has been developed, an analytical dependence has been obtained for the value of the “neutral” section depending on the main geometrical dimensions of the cylinder sleeve of the engine, a rather extensive analysis of the influence of various parameters on the value of the “neutral” section has been carried out.


2022 ◽  
pp. 1-27
Author(s):  
Rui Quan ◽  
Yousheng Yue ◽  
Zikang Huang ◽  
Yufang Chang ◽  
Yadong Deng

Abstract The maximum generated power of automobile exhaust thermoelectric generator (AETEG) can be enhanced by applying inserted fins to its heat exchanger, for the temperature difference of thermoelectric modules (TEMs) is increased. However, the heat exchanger will result in undesired backpressure, which may deteriorate the performance of the internal combustion engine (ICE). To evaluate the backpressure on the performance of both the ICE and the AETEG, the model of ICE integrated with AETEG was established with the GT-power software and validated with the AETEG test bench. The heat exchangers with chaos shape and fishbone shape were proposed, their pressure drop with different engine speeds was studied, and their effects on the performance of both the AETEG and the ICE were analyzed. The results showed that compared with the fishbone-shaped structure, the pressure drop of chaos-shaped heat exchanger is larger at the same engine speed, which contributes to the increased maximum power and hot side temperature of the AETEG. Moreover, compared with the ICE without heat exchanger, the brake torque, brake power, volumetric efficiency and pumping mean effective pressure of the ICE assembled with chaos-shape and fishbone-shape heat exchanger reduce, and the corresponding brake specific fuel consumption, CO emission and CO2 emission increase because of the raised backpressure caused by the heat exchanger.


2021 ◽  
pp. 25-30
Author(s):  

The starting of the internal combustion engine in conditions of low and critically low ambient temperatures is considered. It is shown that a successful start of an internal combustion engine can be ensured by creating a fuel-air mixture with a high temperature outside the engine compartment. The design of a device for creating such mixture and research experimental data are presented. A new scheme of the starting device is proposed, which can be integrated into various types of internal combustion engines. Keywords: internal combustion engine, starting, low temperature, operation. [email protected]


Sign in / Sign up

Export Citation Format

Share Document