Ocean thermal energy harvesting with phase change material for underwater glider

2016 ◽  
Vol 178 ◽  
pp. 557-566 ◽  
Author(s):  
Zhesong Ma ◽  
Yanhui Wang ◽  
Shuxin Wang ◽  
Yanan Yang
2020 ◽  
Vol 14 (2) ◽  
pp. 161-170
Author(s):  
Gourav Verma ◽  
Vidushi Sharma

Background: Thermoelectric (TE) materials are used to fabricate the thermoelectric generator (TEG). Thermoelectric Generator (TEG) is used to convert thermal energy into electrical energy and vice-versa. Bismuth-Telluride and Antimony Telluride (Bi/Sb)2Te3 alloys are popular in the research community due to its capability of electrical energy generation in the range of room temperature. The Phase Change Material (PCM) is a good source of thermal energy storage in thermal energy harvesting. We have reviewed patents having the information of thermal energy storage and tried to provide a better cost-effective solution in thermal energy harvesting using Phase Change Material (PCM) and material used in thermoelectric generator. Finding the most appropriate TE alloy for a particular application is a challenge in the research community. Objective: The objective of this paper is to conduct a study and analysis of performance parameter of (Bi/Sb)-Te based TE alloy along with the effect of Phase Change Material (PCM) on energy generation. Methods: An investigation over a wide range of temperature is performed. A Bi2Te3 based Commercial- of-the-shelf (COTS) Thermoelectric Generator (TEG) has been experimentally tested in a controlled temperature environment for the analysis of its efficiency. Results: This is found that maximum efficiency of 2.12% is achieved at a temperature difference of 60°C. Conclusion: This investigation will be useful for the selection of material for thermal energy harvesting techniques and helps to provide an optimized framework for the research community to decide the (Bi1-xSbx)2Te3 mixed crystal alloy for their applications.


Author(s):  
Tonny Tabassum Mainul Hasan ◽  
Latifa Begum

This study reports on the unsteady two-dimensional numerical investigations of melting of a paraffin wax (phase change material, PCM) which melts over a temperature range of 8.7oC. The PCM is placed inside a circular concentric horizontal-finned annulus for the storage of thermal energy. The inner tube is fitted with three radially diverging longitudinal fins strategically placed near the bottom part of the annulus to accelerate the melting process there. The developed CFD code used in Tabassum et al., 2018 is extended to incorporate the presence of fins. The numerical results show that the average Nusselt number over the inner tube surface, the total melt fraction, the total stored energy all increased at every time instant in the finned annulus compared to the annulus without fins. This is due to the fact that in the finned annulus, the fins at the lower part of the annulus promotes buoyancy-driven convection as opposed to the slow conduction melting that prevails at the bottom part of the plain annulus. Fins with two different heights have been considered. It is found that by extending the height of the fin to 50% of the annular gap about 33.05% more energy could be stored compared to the bare annulus at the melting time of 82.37 min for the identical operating conditions. The effects of fins with different heights on the temperature and streamfunction distributions are found to be different. The present study can provide some useful guidelines for achieving a better thermal energy storage system.


Sign in / Sign up

Export Citation Format

Share Document