Optimal energy cost and economic analysis of a residential grid-interactive solar PV system- case of eThekwini municipality in South Africa

2017 ◽  
Vol 186 ◽  
pp. 28-45 ◽  
Author(s):  
B.P. Numbi ◽  
S.J. Malinga
Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.


2021 ◽  
Author(s):  
Williams S. Ebhota ◽  
Pavel Y. Tabakov

Abstract A rooftop solar photovoltaic (PV) system is an alternative electricity source that is increasingly being used for households. The potential of solar PV is location dependent that needs to be assessed before installation. This study focuses on the assessment of a solar PV potential of a site on coordinates − 29.853762°, 031.00634°, at Glenmore Crescent, Durban North, South Africa. In addition, it evaluates the performance of a 6 kW installed capacity grid-connected rooftop solar PV system to supply electricity to a household. The results, obtained from PV design and simulation tools – PV*SOL, Solargis prospect and pvPlanner, were used to analyse and establish the site and PV system technical viability. The system’s configuration is as follows: load profile - a 2-Person household with 2-children, energy consumption − 3500 kWh, system size − 6 kWp, installation type - roof mount, PV module type - c-Si - monocrystalline silicon, efficiency − 18.9%, orientation of PV modules -Azimuth 0° and Tilt 30°, inverter 95.9% (Euro efficiency), and no transformer. The results show: meteorological parameters - global horizontal irradiation (GHI) 1659.3 kWh/m2, direct normal irradiation (DNI) 1610.6 kWh/m2, air temperature 20.6°C; performance parameters - annual PV energy 8639 kWh, Specific annual yield 1403 kWh/kWp, performance ratio (PR) 74.9%, avoided CO₂ emissions 5662 kg/year, and solar fraction 42.5 %. The analysis and benchmarking of the results show that the proposed solar PV system under the current conditions is technically viable for household electrification in Durban North, South Africa.


Sign in / Sign up

Export Citation Format

Share Document