A techno-economic analysis of the roof top off-grid solar PV system for Jamshedpur, Jharkhand, India

Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.

Author(s):  
Amanda Halim ◽  
Ahmad Fudholi ◽  
Stephen Phillips ◽  
Kamaruzzaman Sopian

<p>At present, solar energy is perceived to be one of the world’s contributive energy sources. Holding characteristics such as inexhaustible and non-polluting, making it as the most prominent among renewable energy (RE) sources. The application of the solar energy has been well-developed and used for electricity generation through Photovoltaic (PV) as the harvesting medium. PV cells convert heat from the sun directly into the electricity to power up the electric loads. Solar PV system is commonly built in a rural area where it cannot be powered up by the utility grid due to location constrains. In order to avoid the electricity fluctuation because of unsteady amount of solar radiation, PV solar hybrid is the efficient solution for rural electrifications. This paper presents a review on optimised Hybrid Solar-PV Diesel system configurations installed and used to power up off grid settlements at various locations worldwide.</p>


2016 ◽  
Vol 5 (3) ◽  
pp. 179-185 ◽  
Author(s):  
Jeffrey Tamba Dellosa

The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU) grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW) to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated.Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available onlineHow to Cite This Article: Dellosa, J. (2016) Potential Effect and Analysis of High Residential Solar Photovoltaic (PV) Systems Penetration to an Electric Distribution Utility (DU). Int. Journal of Renewable Energy Development, 5(3), 179-185.http://dx.doi.org/10.14710/ijred.5.3.179-185


2019 ◽  
Vol 8 (2) ◽  
pp. 113 ◽  
Author(s):  
Md. Mustafizur Rahman ◽  
Chowdhury Sadid Alam ◽  
TM Abir Ahsan

Life cycle assessment (LCA) is an extremely useful tool to assess the environmental impacts of a solar photovoltaic system throughout its entire life. This tool can help in making sustainable decisions. A solar PV system does not have any operational emissions as it is free from fossil fuel use during its operation. However, considerable amount of energy is used to manufacture and transport the components (e.g. PV panels, batteries, charge regulator, inverter, supporting structure, etc.) of the PV system. This study aims to perform a comprehensive and independent life cycle assessment of a 3.6 kWp solar photovoltaic system in Bangladesh. The primary energy consumption, resulting greenhouse gas (GHG) emissions (CH4, N2O, and CO2), and energy payback time (EPBT) were evaluated over the entire life cycle of the photovoltaic system. The batteries and the PV modules are the most GHG intensive components of the system. About 31.90% of the total energy is consumed to manufacture the poly-crystalline PV modules. The total life cycle energy use and resulting GHG emissions were found to be 76.27 MWhth and 0.17 kg-CO2eq/kWh, respectively. This study suggests that 5.34 years will be required to generate the equivalent amount of energy which is consumed over the entire life of the PV system considered. A sensitivity analysis was also carried out to see the impact of various input parameters on the life cycle result. The other popular electricity generation systems such as gas generator, diesel generator, wind, and Bangladeshi grid were compared with the PV system. The result shows that electricity generation by solar PV system is much more environmentally friendly than the fossil fuel-based electricity generation. ©2019. CBIORE-IJRED. All rights reserved


Sign in / Sign up

Export Citation Format

Share Document