Numerical study of gas production from methane hydrate deposits by depressurization at 274 K

2018 ◽  
Vol 227 ◽  
pp. 28-37 ◽  
Author(s):  
Minghao Yu ◽  
Weizhong Li ◽  
Lanlan Jiang ◽  
Xin Wang ◽  
Mingjun Yang ◽  
...  
2020 ◽  
Vol 134 ◽  
pp. 110330
Author(s):  
Yazhou Shao ◽  
Longbin Yang ◽  
Qun Zhang ◽  
Shidong Wang ◽  
Kunfang Wang ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Yasuhide Sakamoto ◽  
Takeshi Komai ◽  
Kuniyuki Miyazaki ◽  
Norio Tenma ◽  
Tsutomu Yamaguchi ◽  
...  

An experimental study of the dissociation of methane hydrate (MH) by hot-water injection and depressurization was carried out at the National Institute of Advanced Industrial Science and Technology (AIST). These experiments helped us understand some important aspects of MH behavior such as how temperature, pressure, and permeability change during dissociation and gas production. In order to understand the experimental results, a model of MH dissociation in a porous media was designed and implemented in a numerical simulator. In the model, we treated the MH phase as a two-component system by representing the pore space occupied by MH as a separate component. Absolute permeability and relative permeability were formulated as a function of MH saturation, porosity, and sand grain diameter and introduced into the numerical model. Using the developed numerical simulator, we attempted history matching of laboratory-scale experiments of the MH dissociation process. It was found that numerical simulator was able to reproduce temperature change, permeability characteristics, and gas production behavior associated with both MH formation and dissociation.


Author(s):  
Ah-Ram Kim ◽  
Gye-Chun Cho ◽  
Joo-Yong Lee ◽  
Se-Joon Kim

Methane hydrate has been received large attention as a new energy source instead of oil and fossil fuel. However, there is high potential for geomechanical stability problems such as marine landslides, seafloor subsidence, and large volume contraction in the hydrate-bearing sediment during gas production induced by depressurization. In this study, a thermal-hydraulic-mechanical coupled numerical analysis is conducted to simulate methane gas production from the hydrate deposits in the Ulleung basin, East Sea, Korea. The field-scale axisymmetric model incorporates the physical processes of hydrate dissociation, pore fluid flow, thermal changes (i.e., latent heat, conduction and advection), and geomechanical behaviors of the hydrate-bearing sediment. During depressurization, deformation of sediments around the production well is generated by the effective stress transformed from the pore pressure difference in the depressurized region. This tendency becomes more pronounced due to the stiffness decrease of hydrate-bearing sediments which is caused by hydrate dissociation.


2010 ◽  
Author(s):  
Kyuro Sasaki ◽  
Shinzi Ono ◽  
Yuichi Sugai ◽  
Norio Tenma ◽  
Takao Ebinuma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document