Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
Latest Publications


TOTAL DOCUMENTS

69
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791849996

Author(s):  
Dianshi Feng ◽  
Sze Dai Pang ◽  
Jin Zhang

The increasing marine activities in the Arctic has resulted in a growing demand for reliable structural designs in this region. Ice loads are a major concern to the designer of a marine structure in the arctic, and are often the principal factor that governs the structural design [Palmer and Croasdale, 2013]. With the rapid advancement in computational power, numerical method is becoming a useful tool for design of offshore structures subjected to ice actions. Cohesive element method (CEM), a method which has been widely utilized to simulate fracture in various materials ranging from metals to ceramics and composites as well as bi-material systems, has been recently applied to predict ice-structure interactions. Although it shows promising future for further applications, there are also some challenging issues like high mesh dependency, large variation in cohesive properties etc., yet to be resolved. In this study, a 3D finite element model with the use of CEM was developed in LS-DYNA for simulating ice-structure interaction. The stability of the model was investigated and a parameter sensitivity analysis was carried out for a better understanding of how each material parameter affects the simulation results.


Author(s):  
Paola Adriana Coca Suaznabar ◽  
Kazuo Miura ◽  
Celso Kazuyuki Morooka

The purpose of this research is to identify in the literature: causes, factors, case study descriptions and adopted solutions for production losses regarding the petroleum flow in offshore oil wells. Those facts will be organized and structured to identify potential zones of intervention for planning the well maintenance during well design phase to avoid production losses. This paper focuses on four offshore regions: Campos Basin, Gulf of Mexico, North Sea, and West Africa. These regions represent the most significant share of offshore oil production in the world. Data set available in the last thirty five years through academic, technical and governmental reports in the literature were the basis of this study. The procedure was accomplished in three steps: (1) data research (2) analysis of the data (3) guidelines establishment. The main cause of production loss regarding the petroleum flow is the solids deposition in the well/line system, such as hydrates, asphaltenes, wax, scales (barium sulfate, strontium sulfate, calcium sulfate, calcium carbonate, and naturally occurrence radioactive material), and calcium naphthenates. In this work the superposition of graphics (hydrate curve, wax appearance temperature, asphaltene onset pressure, and saturation index) resulted in a region free of solids deposition, denominated as “flow assurance envelope”. The main expected result is to propose a guideline to be used during the well design phase in order to minimize and facilitate the well intervention. The main contributions of this paper to the oil industry are the identification of potential zones of intervention due to solids deposition in the well/line system, the foresight of well intervention before the beginning of the oilfield production, and finally, possibilities to improve the well or intervention design.


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Knud Richard Gyland ◽  
Bjørnar Lund ◽  
Sneha Sayindla ◽  
...  

A laboratory scale flow loop for drilling applications has been used for evaluating the effect of lubricants on skin friction during drilling and completion with oil based or low solids oil based fluids. The flow loop included a 10 meter long test section with 2″ OD free whirling rotating drill string inside a 4″ ID wellbore made of concrete elements positioned inside a steel tubing. A transparent part of the housing was located in the middle of the test section, separating two steel sections of equal length. The entire test section was mounted on a steel frame which can be tilted from horizontal to 30° inclination. The drilling fluids and additives in these experiments were similar to those used in specific fields in NCS. Friction coefficient was calculated from the measured torque for different flow velocities and rotational velocities and the force perpendicular to the surface caused by the buoyed weight of the string. The main objective of the article has been to quantify the effect on mechanical friction when applying different concentrations of an oil-based lubricant into an ordinary oil based drilling fluid and a low solids oil based drilling fluid used in a North Sea drilling and completion operation.


Author(s):  
Ah-Ram Kim ◽  
Gye-Chun Cho ◽  
Joo-Yong Lee ◽  
Se-Joon Kim

Methane hydrate has been received large attention as a new energy source instead of oil and fossil fuel. However, there is high potential for geomechanical stability problems such as marine landslides, seafloor subsidence, and large volume contraction in the hydrate-bearing sediment during gas production induced by depressurization. In this study, a thermal-hydraulic-mechanical coupled numerical analysis is conducted to simulate methane gas production from the hydrate deposits in the Ulleung basin, East Sea, Korea. The field-scale axisymmetric model incorporates the physical processes of hydrate dissociation, pore fluid flow, thermal changes (i.e., latent heat, conduction and advection), and geomechanical behaviors of the hydrate-bearing sediment. During depressurization, deformation of sediments around the production well is generated by the effective stress transformed from the pore pressure difference in the depressurized region. This tendency becomes more pronounced due to the stiffness decrease of hydrate-bearing sediments which is caused by hydrate dissociation.


Author(s):  
Xiao Xiong ◽  
Mohammad Azizur Rahman ◽  
Yan Zhang

A RANS based shear stress transportation (SST) model was employed in this study to validate experimental results from a recent literature, which investigated the fully developed turbulent flow for a non-Newtonian shear thinning fluid, containing drag reduction polymer additives in a horizontal concentric annulus (inner to outer radio θ = 0.4). The polymer concentration varied from 0.07% V/V to 0.12% V/V and three mass flow rates from 3.92 kg/s to 5.95 kg/s were analyzed. The viscous property of the fluid was modeled by the power-law model. Simulation performed with the commercial code of ANSYS-CFX indicated that the SST model with default model constants overestimated the turbulence statistics of shear thinning flow in the near wall region where y+<60. As an effort to improve simulation accuracy, one of the model constants α1 was tuned in this study for the first time. Simulation results obtained from the modified model showed better agreement with experimental data compared to those from the default one. The present study represents a successful benchmark task for simulating turbulent shear thinning flow in concentric annuli with modified turbulence model constants.


Author(s):  
Ming Song ◽  
Ekaterina Kim ◽  
Jørgen Amdahl ◽  
Marilena Greco ◽  
Mhamed Souli

When ice floes collide against marine structures, pronounced hydrodynamic loads are induced by the water-ice-structure interaction. With today’s highly competitive structural design market, it is nearly impossible to ignore the advances that have been made in the computer analysis of fluid-structure interaction (FSI) problems. FSI methods can provide accurate representation of hydrodynamic effects. A number of commercial programs have been developed, and their applications in structural design increases rapidly. For instance, Arbitrary Lagrangian-Eulerian (ALE) formulations have been used to solve underwater explosions problems in ocean engineering, and soil-structure interaction problems in civil engineering. Application to fluid-ice-structure interaction problems is more recent and growing. This paper represents a contribution in assessing the capabilities of the ALE formulation for fluid-ice-structure collision problems. The ALE and coupling algorithms have been successfully validated through the comparison against model tests of an ice-structure collision. The work also examines the numerical convergence and the sensitivity of the results to the theoretical modelling used. From the sensitivity study it is concluded that the effect of viscosity and equation of state for the water model within the ALE formulation are insignificant, whereas the choice of the element size has a noticeable effect on the computed contact forces and the motions of the impacted structure.


Author(s):  
Alireza Dehghani-Sanij ◽  
Yuri S. Muzychka ◽  
Greg F. Naterer

Sea spray icing is one of the most significant problems for the operation of marine vessels and offshore structures in Arctic regions. This phenomenon affects the stability of marine vessels and offshore structures, and also the safety of human activities onboard. In this paper, a new predictive icing model for large horizontal surfaces of a marine vessel is developed. To obtain the total flux of sea spray during the icing process, both wind spray and wave spray are considered. By applying heat, mass and salt concentration balances, the freezing fraction, temperature distribution, ice layer and water film thicknesses are determined. Moreover, the effects of different parameters on the freezing fractions at various air temperatures are investigated. The results indicate that air temperature, wind velocity, vessel speed, spray water salinity, height from the water surface, and angle between the vessel heading and wind/wave direction are major parameters in the growth rate of the ice. This theoretical method provides a reasonably accurate and simple way for predicting the sea spray icing phenomena on marine vessels and offshore structures.


Author(s):  
Aziz Ahmed ◽  
Mohammed Abdul Hannan ◽  
Xudong Qian ◽  
Bai Wei

Arctic is the one of the final frontiers in the field of oil and gas exploration. It is also a potential source of the vast amount of renewable energy using wind turbines and wave energy converters. Floating platforms hold certain advantages over fixed platforms for such harsh environment, as they allow disconnection and reconnection in the event of large icebergs or vast multi-year ice floes. They are also commercially attractive as they allow redeployment in other regions during the Arctic off-peak periods. However, such platforms will still need to encounter and withstand first-year level ice of varying sizes and from different directions. Such large ice floes will interfere with the hydrodynamic response of the floater. The hydrodynamic analysis of an isolated floater without accounting for the effect of the level ice is incomplete and may result in a un-conservative prediction of the floater’s response. The lack of any simple methodology to account for the effect of level ice on the hydrodynamic behavior of the floater is the motivation behind this study. This study aims to identify the most relevant parameters affecting the multi-body hydrodynamic behavior of level ice and a single floater. A standard semi-submersible represents the floater, and a range of geometric variations of the level ice simulates the varying nature of the ice environment encountered by the floaters in the Arctic. This study validates the hydrodynamic analysis procedure against model test on an ice floe and wave interaction. The calibration of the model test provides the damping coefficient required for the frequency domain, multi-body hydrodynamic model. This investigation varies the ice orientation and distance from the floater for a detailed parametric study employing the calibrated model. Current research finds that the presence of a comparably sized level ice floe near the floater significantly influences the hydrodynamic Response Amplitude Operator (RAO) of the floater. It can diminish the RAOs in some degree of freedom while enhancing the RAOs in other degree of freedoms. This study identifies the wave direction, ice floe distance, ice floe orientation as the most important parameters. Sway and pitch motion of the floater experienced the most enhancements due to the presence of level ice floe along the incoming wave direction. Additionally, this study proposes some initial upper bound values to account for the effect of level ice floes on the RAOs generated from a single body hydrodynamic analysis.


Sign in / Sign up

Export Citation Format

Share Document