production well
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 119)

H-INDEX

15
(FIVE YEARS 2)

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Katja E. Schulz ◽  
Kristian Bär ◽  
Ingo Sass

A hydrothermal doublet system was drilled in a fault-related granitic reservoir in Cornwall. It targets the Porthtowan Fault Zone (PTF), which transects the Carnmenellis granite, one of the onshore plutons of the Cornubian Batholith in SW England. At 5058 m depth (TVD, 5275 m MD) up to 190 °C were reached in the dedicated production well. The injection well is aligned vertically above the production well and reaches a depth of 2393 m MD. As part of the design process for potential chemical stimulation of the open-hole sections of the hydrothermal doublet, lab-scale acidification experiments were performed on outcrop analogue samples from the Cornubian Batholith, which include mineralised veins. The experimental setup comprised autoclave experiments on sample powder and plugs, and core flooding tests on sample plugs to investigate to what degree the permeability of natural and artificial (saw-cut) fractures can be enhanced. All samples were petrologically and petrophysically analysed before and after the acidification experiments to track all changes resulting from the acidification. Based on the comparison of the mineralogical composition of the OAS samples with the drill cuttings from the production well, the results can be transferred to the hydrothermally altered zones around the faults and fractures of the PTF. Core Flooding Tests and Autoclave Experiments result in permeability enhancement factors of 4 to >20 and 0.1 to 40, respectively. Mineral reprecipitation can be avoided in the stimulated samples by sufficient post-flushing.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Saeed Mahmoodpour ◽  
Mrityunjay Singh ◽  
Kristian Bär ◽  
Ingo Sass

Well placement in a given geological setting for a fractured geothermal reservoir is necessary for enhanced geothermal operations. High computational cost associated with the framework of fully coupled thermo-hydraulic-mechanical (THM) processes in a fractured reservoir simulation makes the well positioning a missing point in developing a field-scale investigation. To enhance the knowledge of well placement for different working fluids, we present the importance of this topic by examining different injection-production well (doublet) positions in a given fracture network using coupled THM numerical simulations. Results of this study are examined through the thermal breakthrough time, mass flux, and the energy extraction potential to assess the impact of well position in a two-dimensional reservoir framework. Almost ten times the difference between the final amount of heat extraction is observed for different well positions but with the same well spacing and geological characteristics. Furthermore, the stress field is a strong function of well position that is important concerning the possibility of high-stress development. The objective of this work is to exemplify the importance of fracture connectivity and density near the wellbores, and from the simulated cases, it is sufficient to understand this for both the working fluids. Based on the result, the production well position search in the future will be reduced to the high-density fracture area, and it will make the optimization process according to the THM mechanism computationally efficient and economical.


Author(s):  
N. M. Shayakhmetov ◽  
◽  
D. Y. Aizhulov ◽  

The paper discusses and research the factors affecting the filtration rate to reduce stagnant zones in the domain and spreading outside the block under consideration. The main hydrodynamic factors in production by In-Situ Leaching are the distribution of permeability in the reservoir and well flow rates. The study of the factors was carried out on the basis of mathematical models using Darcy Law and Law of Conservation of Mass. Calculation was accomplished on a two-dimensional area with an isotropic and non-uniform permeability distribution to determine the effect of permeability on the leached area. The permeability coefficient was distributed respectively over three zones, in the southern part the permeability was low, in the central transition from low to high, respectively, in the northern part there was a highly permeable zone. Three wells were located in the domain, with the production well in the center of the domain. Injection wells are located symmetrically with respect to a horizontal line passing through the center of the area under consideration. The calculation was carried out for three modes of well flow rates with the ratio of the flow rates of the injection wells 0.5 / 0.5, 0.2 / 0.8, 0.8 / 0.2 relative to the flow rate of the production well. On the basis of comparative analyzes of the obtained results, it is concluded that: at the same flow rates, regardless of the permeability of the zones, the results obtained show that the leaching area in the low-permeability zone is larger in comparison with the high-permeability zone; with an increase in permeability, the shape of the leaching zone tends from round to drop-shaped; with an increase in the flow rate of wells in the radius of the leaching zone, it increases if the flow rate of solutions is much higher than the filtration rate.


2021 ◽  
Author(s):  
Jeres Rorym Cherdasa ◽  
Tutuka Ariadji ◽  
Benyamin Sapiie ◽  
Ucok W. R. Siagian

Abstract East Natuna is well known for its huge natural gas reserves with a very high CO2 content. The appearance of CO2 content in an oil and gas field is always considered as waste material and will severely affect the economic value of the field. The higher the content, the more costly the process, both technically and environmentally. In this research, the newly proposed reservoir management approach called CSSU (Carbon Sequestration Storage and Utilization) method is trying to change the paradigm of CO2 from waste material into economic materials. The novelty of this research is the combined optimization of deterministic and stochastic methods with the Particle Swarm Optimization (PSO) algorithm to answer complex and non-linear problems in the CSSU (Carbon Sequestration Storage and Utilization) method. The CSSU method is an integration of geological, geophysical, reservoir engineering and engineering economics with the determination of technical and economic optimization of the use of CO2 produced as working fluid in a power generation system that has been conditioned through an injection-production system in geological formations. The CSSU research area is located in a sedimentary basin that has a giant gas field with 70% CO2 content. The Volumetric Storage Capacity for CO2 injection process in research area is 1,749.14 BCF or 94.01 MMTon which being calculated based on static modeling considering geological, geophysical and petrophysical aspects. A combination of Compositional, Geomechanics and Thermal reservoir simulation model had been conducted to determines the Storage Injection capacity and later to prove the CSSU method in which CO2 fluids will be utilized as working fluid, 1 case was built using 2 Injection Wells and 1 CO2 fluid Production Well. The simulation results show with 1 production well the total of CO2 fluid injected from 2 Injection wells can almost double the injection total capacity up to 1,150 BCF. The utilization of supercritical CO2 fluid as working fluid can produce 55 – 133.5 MMBTU/Day or 0.67 - 1.63 MW from 1 production well for 25 years timeframe. The CSSU method is optimized by deterministic and stochastic methods using the Particle Swarm Optimization (PSO) algorithm by looking the technical and economical aspects. The technical optimization aspect is being analyzed by electricity production versus well counts. The economical optimization is being analyzed by operational expenditure saving versus well counts and electricity produced versus NPV 10%. From both aspects the 4 injector wells case and NPV 200.00 MM US$ gives the most optimum result within technically and economically. The CSSU economic model proved with CSSU scheme the economical value is being increased by 57 MMUS$ after operating cost efficiency due to the electricity savings, 92 MMUS$ due to Carbon Trading which resulting the NPV 10% is 172.77 MMUS$.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8363
Author(s):  
Lihong Yang ◽  
Zhao Liu ◽  
Hao Zeng ◽  
Jianzheng Su ◽  
Yiwei Wang ◽  
...  

In order to weaken the influence of external groundwater on in situ pyrolysis exploitation, the flow characteristics of groundwater were studied according to the oil shale reservoir characteristics of Qingshankou Formation in Songliao Basin, China. In addition, the parameters of marginal gas flooding for water-stopping were optimized. Taking a one-to-one pattern and a five-spot pattern as examples, the characteristics of groundwater flow under the in situ process were studied. Under the one-to-one pattern, the external groundwater flows into the production well from the low-pressure side, and the water yield was basically stable at 1000 kg/d. In the five-spot pattern, the groundwater can flow into the production wells directly from the windward side, and the water yield of the production well on the leeward side mainly comes from the desaturated zone; the water yield of each production well remains at a high level. By setting water-stopping wells around the production well and keeping the gas flooding pressure slightly higher than the production well, the water yield of the production well can be reduced and stabilized within 100 kg/d under gas flooding pressures of 3 and 5 MPa. However, the gas yield of the production well slightly decreased when the gas flooding pressure reduced from 5 to 3 MPa. Therefore, the gas flooding pressure of water-stopping wells shall be determined in combination with the water yield and gas yield, so as to achieve the best process effect. It is expected that the results will provide technical support for large-scale oil shale in situ pyrolysis exploitation.


2021 ◽  
Author(s):  
Mohammed T. Al-Murayri ◽  
Abrahim Hassan ◽  
Naser Alajmi ◽  
Jimmy Nesbit ◽  
Bastien Thery ◽  
...  

Abstract Mature carbonate reservoirs under waterflood in Kuwait suffer from relatively low oil recovery due to poor volumetric sweep efficiency, both areal, vertically, and microscopically. An Alkaline-Surfactant-Polymer (ASP) pilot using a regular five-spot well pattern is in progress targeting the Sabriyah Mauddud (SAMA) reservoir in pursuit of reserves growth and production sustainability. SAMA suffers from reservoir heterogeneities mainly associated with permeability contrast which may be improved with a conformance treatment to de-risk pre-mature breakthrough of water and chemical EOR agents in preparation for subsequent ASP injection and to improve reservoir contact by the injected fluids. Each of the four injection wells in the SAMA ASP pilot was treated with a chemical conformance improvement formulation. A high viscosity polymer solution (HVPS) of 200 cP was injected prior to a gelant formulation consisting of P300 polymer and X1050 crosslinker. After a shut-in period, wells were then returned to water injection. Injection of high viscosity polymer solution (HVPS) at the four injection wells showed no increase in injection pressure and occurred higher than expected injection rates. Early breakthrough of polymer was observed at SA-0561 production well from three of the four injection wells. No appreciable change in oil cut was observed. HVPS did not improve volumetric sweep efficiency based on the injection and production data. Gel treatment to improve the volumetric conformance of the four injection wells resulted in all the injection wells showing increased of injection pressure from approximately 3000 psi to 3600 psi while injecting at a constant rate of approximately 2,000 bb/day/well. Injection profiles from each of the injection well ILTs showed increased injection into lower-capacity zones and decreased injection into high-capacity zones. Inter-well tracer testing showed delayed tracer breakthrough at the center SA-0561 production well from each of the four injection wells after gel placement. SA-0561 produced average daily produced temperature increased from approximately 40°C to over 50°C. SA-0561 oil cuts increased up to almost 12% from negligible oil sheen prior to gel treatments. Gel treatment improved volumetric sweep efficiency in the SAMA SAP pilot area.


2021 ◽  
Author(s):  
Mohamad Mustaqim Mokhlis ◽  
Nurdini Alya Hazali ◽  
Muhammad Firdaus Hassan ◽  
Mohd Hafiz Hashim ◽  
Afzan Nizam Jamaludin ◽  
...  

Abstract In this paper we will present a process streamlined for well-test validation that involves data integration between different database systems, incorporated with well models, and how the process can leverage real-time data to present a full scope of well-test analysis to enhance the capability for assessing well-test performance. The workflow process demonstrates an intuitive and effective way for analyzing and validating a production well test via an interactive digital visualization. This approach has elevated the quality and integrity of the well-test data, as well as improved the process cycle efficiency that complements the field surveillance engineers to keep track of well-test compliance guidelines through efficient well-test tracking in the digital interface. The workflow process involves five primary steps, which all are conducted via a digital platform: Well Test Compliance: Planning and executing the well test Data management and integration Well Test Analysis and Validation: Verification of the well test through historical trending, stability period checks, and well model analysis Model validation: Correcting the well test and calibrating the well model before finalizing the validity of the well test Well Test Re-testing: Submitting the rejected well test for retesting and final step Integrating with corporate database system for production allocation This business process brings improvement to the quality of the well test, which subsequently lifts the petroleum engineers’ confidence level to analyze well performance and deliver accurate well-production forecasting. A well-test validation workflow in a digital ecosystem helps to streamline the flow of data and system integration, as well as the way engineers assess and validate well-test data, which results in minimizing errors and increases overall work efficiency.


2021 ◽  
Author(s):  
Sreekumar Nair ◽  
Salah Thebet ◽  
Ibrahim Al Obeidli ◽  
Mohamad Bara Adi ◽  
Maher Al Reyami ◽  
...  

Abstract Al Dhafra Petroleum Operations Company Limited, (Joint Venture between ADNOC and KADOC, established in late 2013 and assigned with Onshore and Offshore concession areas in Abu Dhabi) had the challenging task to achieve the sustainability of crude production to 40,000 BOPD by end of 2020 from their Haliba field. Current production profile with available wells could not meet that target, for which additional 4 production well Tie-in and construction of 8 km 6″ flow line became necessary within next 3 months. Regular Tie-in program may complete the first Tie-in only by Q2, 2021 and no possibility of enhancing this Tie-in works by 2020. Al Dhafra Management has appointed the Project Management Team (PMT) to take up the challenge by attempting many methods and the timeline was very limited (approximately 90days) to obtain First Oil from those wells.


2021 ◽  
Author(s):  
Mohammed T. Al Murayri ◽  
Dawood S. Sulaiman ◽  
Anfal Al-Kharji ◽  
Munther Al Kabani ◽  
Ken S. Sorbie ◽  
...  

Abstract An alkaline-surfactant-polymer (ASP) pilot in a regular five spot well pattern is underway in the Sabriyah Mauddud (SAMA) reservoir in Kuwait. High divalent cation concentrations in formation water and high carbonate concentration of the ASP formulation makes the formation of calcite scale a concern. The main objective of this study is to investigate the severity of the calcium carbonate (CaCO3) scaling issues in the central producer in pursuit of a risk mitigation strategy to treat the potential scale deposition and reduce the flow assurance challenges. Calcite scaling risk in terms of Saturation Ratio (SR) and scale mass (in mg/L of produced water) in the pilot producer is potentially very severe and the probability of forming calcium carbonate scale at the production well is high. Produced Ca2+ concentration is high (> 800 mg/l), which makes the equilibrated calcite SR severe (> 500) and results in significant amount of scale mass precipitation. Different flooding strategies were modelled to evaluate a variety of flood design options to mitigate scale risks (varying slug size, Na2CO3 concentration, and volume of softened pre-flush brine), with marginal impact on scale formation. When the high permeability contrast of the different layers is reduced (to mimic gel injection), calcite SR and precipitated scale mass is significantly reduced to manageable levels. The option of injecting a weak acid in the production well downhole can suppress most of the expected calcite scale through reduction of the brine pH in the produced fluid stream for the ASP flood. Weak acid concentrations in the range of 4,000 to 5,000 mg/l are forecast to mitigate scale formation.


Sign in / Sign up

Export Citation Format

Share Document