scholarly journals Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime

2018 ◽  
Vol 218 ◽  
pp. 470-478 ◽  
Author(s):  
Jianwei Li ◽  
Rui Xiong ◽  
Hao Mu ◽  
Bertrand Cornélusse ◽  
Philippe Vanderbemden ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 899
Author(s):  
Philipp Glücker ◽  
Klaus Kivekäs ◽  
Jari Vepsäläinen ◽  
Panagiotis Mouratidis ◽  
Maximilian Schneider ◽  
...  

Electrification of transportation is an effective way to tackle climate change. Public transportation, such as electric buses, operate on predetermined routes and offer quiet operation, zero local emissions and high energy efficiency. However, the batteries of these buses are expensive and wear out in use. The battery ageing is expedited by fast charging and power spikes during operation. The contribution of this paper is the reduction of the power spikes and thus a prolonged battery lifetime. A novel hybrid energy storage system for electric buses is proposed by introducing a flywheel in addition to the existing battery. A simulation model of the hybrid energy storage system is presented, including a battery ageing model to measure the battery lifetime. The bus was simulated during its daily driving operation on different routes with different energy management strategies and flywheel configurations. These different flywheels as well as the driving cycle had a significant impact on the battery life increase. The proposed hybrid battery/flywheel storage system resulted in a battery lifetime increase of 20% on average.


Sign in / Sign up

Export Citation Format

Share Document